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Complexity of Games on Graphs

a graph consists of
vertices and edges
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Complexity of Games on Graphs

• 2 players
• complete

information
• no randomness
• play optimally

source: Wikimedia commons
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Computational Complexity of Games on Graphs

Tractable: algorithm running in
polynomial time (class P)

Intractable: under common
assumptions, there is no
algorithm that runs in
polynomial time (class NP-hard)

P

NP

PSPACE

EXPTIME

NP-hard
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Problems - 13th International Conference, RP 2019
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with Pavel Dvořák, and Michal Opler; in Graph-Theoretic
Concepts in Computer Science - 47th International Workshop,
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3 Online Ramsey Number
with Pavel Dvořák, and Tomáš Valla; in Computer Science -
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Science Symposium in Russia, CSR 2019

4 Group Identification
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Game setting

G:

Given a graph G, you place k
guards on its vertices.

Now, we perform 1 turn:
1 I will attack a vertex.
2 You may move each guard

along at most one edge.
3 You defended my attack if a

guard stands on the attacked
vertex.

You win if you successfully
defend.
I win if you did not defend.
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Dominating set

guards

is dominating set

is not dominating set

Game with 1 turn ≈ Dom. number
I pick a vertex and you have to defend it
(step on it) by moving each guard along
at most one edge.

Dominating set

Set of guards D ⊆ V (G) such that each
vertex of the graph G either is in D or
in its neighborhood.

Domination number
Smallest possible size of the set D.
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Eternal Domination Number

Game of Domination
I pick a vertex and you have to defend it
by moving each guard along at most one
edge.

Game of Eternal Domination
I pick a vertex and you have to defend it
by moving each guard along at most one
edge, for an infinite number of turns.

What is the minimum number of guards
you need to eternally defend the graph
against an arbitrary sequence of attacks.
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Eternal Domination Number

configurations

x

A B C

D E

dominating set

eternal domiation

Game of Domination
I pick a vertex and you have to defend it
by moving each guard along at most one
edge.

Game of Eternal Domination
I pick a vertex and you have to defend it
by moving each guard along at most one
edge, for an infinite number of turns.

What is the minimum number of guards
you need to eternally defend the graph
against an arbitrary sequence of attacks.
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Eternal Domination Number

| dominating set | = ⌈n
3 ⌉
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I pick a vertex and you have to defend it
by moving each guard along at most one
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Eternal Domination Number

| dominating set | = ⌈n
3 ⌉

| eternal dom. set | = ⌈n
2 ⌉

Game of Domination
I pick a vertex and you have to defend it
by moving each guard along at most one
edge.

Game of Eternal Domination
I pick a vertex and you have to defend it
by moving each guard along at most one
edge, for an infinite number of turns.

What is the minimum number of guards
you need to eternally defend the graph
against an arbitrary sequence of attacks.
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Relation to Domination number

domination ≤ eternal domination ≤ 2× domination

domination ≤ eternal domination
every configuration must form a
dominating set

eternal domination ≤ 2× dom.
we can defend neighborhood of
each vertex of the dominating set
by a star-defending strategy
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Defending trees
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Defending trees

A B

C
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Defending trees

Reduction Lower bound Upper bound
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Defending trees
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Decision variant of the problem

m-Eternal Domination - decision variant:

Input: Graph G, integer k
Output: Can k guards defend G against any sequence of attacks?

P

NP

PSPACE

EXPTIME

NP-hard
• Known to be NP-hard,
• lies in EXPTIME,
• unknown whether it lies in

PSPACE.

We denote the minimum k which results in yes instance as γ∞m (G).
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Cactus graphs

Definition
Graph is cactus graph when
every edge belongs to at most
one cycle.

Cactus graphs are characterized
by one forbidden minor: (K4 \ e).

Theorem (B., Křišťan, Valla)

Let G be a cactus graph. Then
there exists a polynomial
algorithm which computes the
minimum required number of
guards to eternally defend G.
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Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles



Introduction m-Eternal domination Hat Chromatic Number Summary

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

uu
−1

v

a a



Introduction m-Eternal domination Hat Chromatic Number Summary

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles



Introduction m-Eternal domination Hat Chromatic Number Summary

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

a b

−1

u

v

a b



Introduction m-Eternal domination Hat Chromatic Number Summary

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

a b

−1

u

v

a b



Introduction m-Eternal domination Hat Chromatic Number Summary

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

a b

−1

u

v

a b



Introduction m-Eternal domination Hat Chromatic Number Summary

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

a b

−1

u

v

a b



Introduction m-Eternal domination Hat Chromatic Number Summary

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

a b

−1

ua b



Introduction m-Eternal domination Hat Chromatic Number Summary

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

a b

−1

ua b



Introduction m-Eternal domination Hat Chromatic Number Summary

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

uu
−1

v

a a



Introduction m-Eternal domination Hat Chromatic Number Summary

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

u

v

u

v



Introduction m-Eternal domination Hat Chromatic Number Summary

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

u

v

u

v



Introduction m-Eternal domination Hat Chromatic Number Summary

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles



Introduction m-Eternal domination Hat Chromatic Number Summary

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles



Introduction m-Eternal domination Hat Chromatic Number Summary

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

a b

−1

u

v

a b



Introduction m-Eternal domination Hat Chromatic Number Summary

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

a b

−1

u

v

a b



Introduction m-Eternal domination Hat Chromatic Number Summary

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

a b

−2

u
ba



Introduction m-Eternal domination Hat Chromatic Number Summary

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

a b

−2

u
ba



Introduction m-Eternal domination Hat Chromatic Number Summary

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

−0

u
u1 u2

u

v

u

v



Introduction m-Eternal domination Hat Chromatic Number Summary

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

−0

u
u1 u2

u

v

u

v



Introduction m-Eternal domination Hat Chromatic Number Summary

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles



Introduction m-Eternal domination Hat Chromatic Number Summary

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles



Introduction m-Eternal domination Hat Chromatic Number Summary

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

−1

ua ba b



Introduction m-Eternal domination Hat Chromatic Number Summary

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

−1

ua ba b



Introduction m-Eternal domination Hat Chromatic Number Summary

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

−1

ua ba b



Introduction m-Eternal domination Hat Chromatic Number Summary

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles



Introduction m-Eternal domination Hat Chromatic Number Summary

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles



Introduction m-Eternal domination Hat Chromatic Number Summary

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles



Introduction m-Eternal domination Hat Chromatic Number Summary

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

We have a polynomial algorithm that finds γ∞
m of any cactus

graph.
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Hat Chromatic Number
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Hat Chromatic Number
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Players
Bears play against an evil Demon.

The game proceeds as:
1 Demon presents a graph G and

number of colors k.
2 Bears can agree on a strategy.

Then bears can no longer talk and
are put on vertices of the graph.

3 Demon puts a colored hat on each
bear’s head.

4 All bears at once guess their hat
colors based only on hat’s colors of
their neighbors.

5 Bears win if at least one bear
guesses correctly.
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a

b

c

a+ b+ c ≡ 0 (mod 3)

a+ b+ c ≡ 1 (mod 3)

a+ b+ c ≡ 2 (mod 3)
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Generalizations

0

1

1

0

1

1

0

1

1

out of 3

out of 2out of 3

g: 1?

g: 2?

g: 0 or 1?

• restrict visibility
• possibly different number of

hats for each bear
• allow multiple guesses
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Fractional Hat Chromatic Number

A hat chromatic number µ(G) of a graph G is the maximum
number of colors for which bears win.

Definition
A fractional hat chromatic number µ̂(G) is

µ̂(G) = sup {h/g | bears win with h colors and g guesses}

• µ(Kn) = n, i.e., bears win if∑
v∈V

1
h ≥ 1

• bears win on Kn if
∑

v∈V
1
hv

≥ 1

Theorem

Bears win a game
(
Kn = (V,E),h,g

)
if and only if

∑
v∈V

gv
hv

≥ 1.

guess 1 out of 3

guess 1 out of 2

guess 1 out of 6
1
2 + 1

3 + 1
6 ≥ 1
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• µ(Kn) = n, i.e., bears win if∑
v∈V

1
h ≥ 1

• bears win on Kn if
∑

v∈V
1
hv

≥ 1

Theorem

Bears win a game
(
Kn = (V,E),h,g

)
if and only if

∑
v∈V

gv
hv

≥ 1.

guess 1 out of 3

guess 1 out of 2

guess 1 out of 6
1
2 + 1

3 + 1
6 ≥ 1
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General case – a connection to Independent sets

How many different colorings can a vertex u guess correctly?

u

fixed colors

u u

He guesses correctly in exactly gu
hu

fraction of all colorings.

Trying to count the number of such colorings naturally leads to the
independence polynomial.
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General case – a connection to Independent sets

Independence polynomial: 3x2 + 5x = 5 · 1
3
− 3 ·

(
1

3

)2
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Perfect strategies

Definition
A strategy for a hat guessing game is perfect if it is winning and in
every hat arrangement, no two bears that guess correctly are on
adjacent vertices.

0

R(G)

losing games

perfect strategies
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Chordal graphs and their decomposition

Definition
A clique tree of a graph G is a tree T whose vertex set is precisely
the subsets of V that induce maximal cliques in G and for each
v ∈ V the vertices of T containing v induces a connected subtree.

Fact
G is chordal if and only if it possesses a clique tree.
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Clique join – an operation that builds chordal graphs

Definition (Clique join)

Let G1 = (V1, E1) and G2 = (V2, E2) be graphs, S ⊆ V1 a clique
in G1 and v ∈ V2. The clique join of G1 and G2 with respect to S
and v is the graph G:

G1 G2

S
v

G

S
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Theorem
There is an algorithm that computes an optimal strategy of bears
of an arbitrary chordal graph in polynomial time.
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Theorem
There is an algorithm that computes an optimal strategy of bears
of an arbitrary chordal graph in polynomial time.

winning games

0

R(G)

losing games

perfect strategies
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Contribution of the thesis

1 m-Eternal domination

• provided a toolbox for obtaining bounds on solution size
• polynomial algorithm for cactus graphs

2 Hat Chromatic Number

• introduced a fractional generalization of the parameter
• connected it to graph independence polynomial
• designed a polynomial algorithm for chordal graphs

3 Online Ramsey Number

• introduced a concept of Induced online Ramsey numbers
• showed asymptotically tight constructions and showed an

asymptotic gap from its non-game counterpart for trees

4 Group Identification

• analyzed complexity of 2-player variant of the problem
• provided a complete parameterized complexity picture
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2 Hat Chromatic Number
• introduced a fractional generalization of the parameter
• connected it to graph independence polynomial
• designed a polynomial algorithm for chordal graphs

3 Online Ramsey Number
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4 Group Identification
• analyzed complexity of 2-player variant of the problem
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Thank you for your attention!
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Question 1
The result about the asymptotic gap between size-Ramsey numbers
and online Ramsey numbers is similar to the result of Conlon,
which is about complete graphs and was proved using
pseudo-random graphs.
Did you consider using these techniques for other graphs besides
the complete graphs? Do they apply for trees as well? Can you
compare your techniques and the ones used by Conlon?

Comment
It is not clear how one would apply this method to non-complete
graphs. We aimed for a constructive result.
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Question 2
You found an algorithm for determining the m-eternal domination
number of cactus graphs. Can you say something about the growth
rate of these numbers with respect to the number of vertices?

Comment
Stars are guarded by 2 guards, paths with n

2 , and cycles with n
3

guards and n guards always suffice.
Our reductions on cactus graphs give the following ratios
(guards/vertices): 0

1 ,
1
3 ,

2
5 ,

3
7 , and 1

2
=⇒ Cactus graphs can always be defended with n

2 + 1 guards.
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Question 1
What are the difficulties in generalizing the results for eternal
domination to graphs of treewidth at most 2?

Comment
• Graph with treewidth 2 have a nice decomposition using cuts

of size 2, but they may contain many interlocking cycles.
• Complex cycles structure increase intricacy of the problem

significantly.
• Partial results may be obtained by assumptions on the

structure of the solution.
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