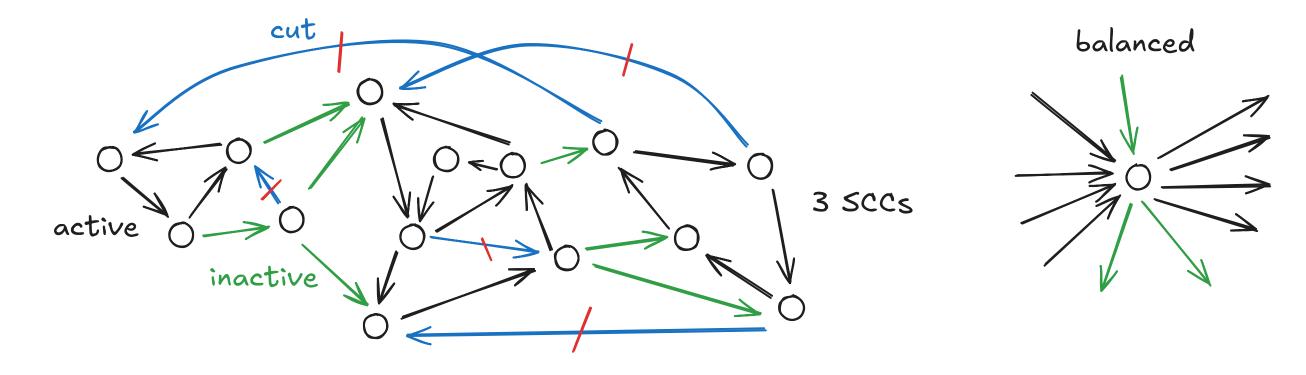
ON THE PARAMETERIZED COMPLEXITY OF EULERIAN STRONG COMPONENT ARC DELETION

<u>Václav Blažej,</u>

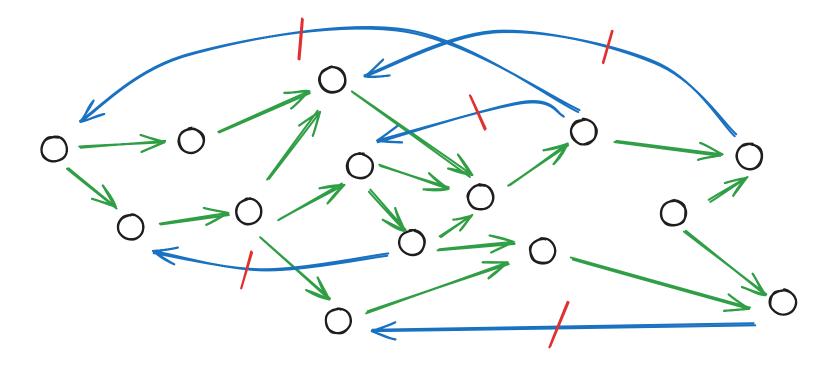
with Satyabrata Jana, M.S. Ramanujan, and Peter Strulo



1

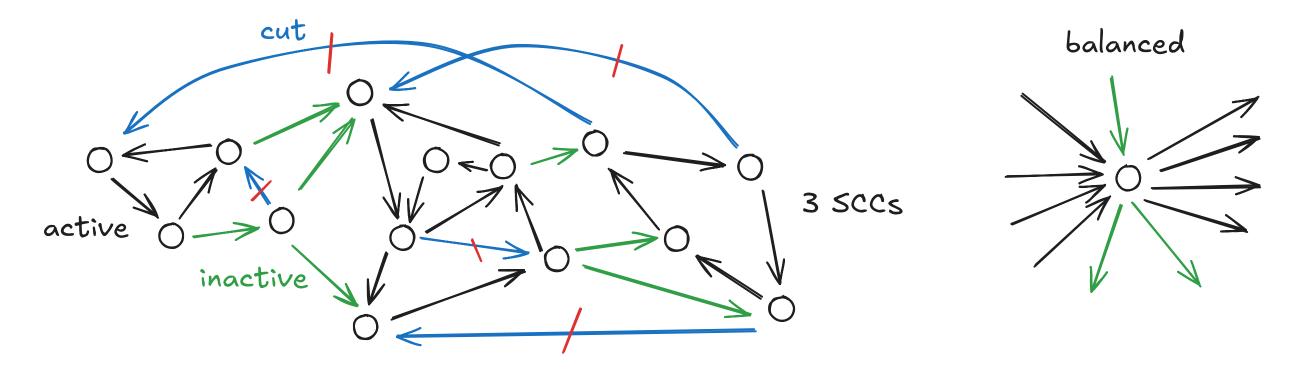
FEEDBACK ARC SET

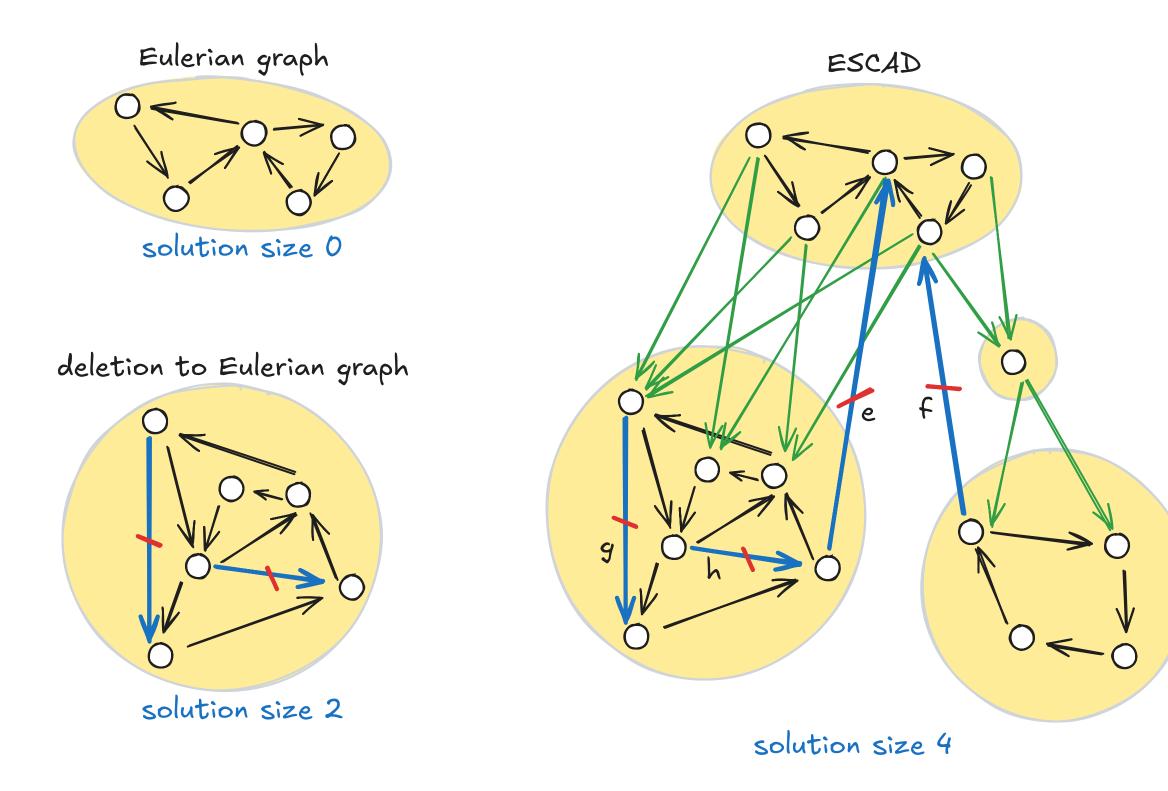
- Input: directed graph *G*, integer *k*
- Output: Is there a set of arcs S, $|S| \le k$, such that every strongly connected component of G S has size one?



EULERIAN STRONG COMPONENT ARC DELETION (ESCAD)

- Input: directed graph G, integer k
- Output: Is there a set of arcs S, $|S| \le k$, such that every strongly connected component of G S has size one is Eulerian?





PREVIOUS WORK

same problem but removing vertices instead

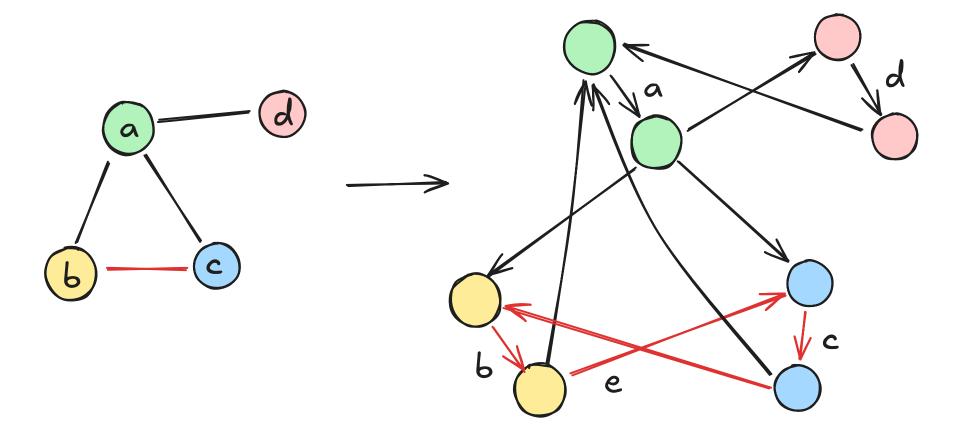
• Göke, Marx, Mnich; *Discret. Optim. (2022)* NP-hardness of the vertex deletion variant

requiring G - S to be Eulerian (balanced + **connected**)

- Cygan, Marx, Pilipczuk, Pilipczuk, Schlotter; *Algorithmica (2012)* FPT algorithm for arc deletion to Eulerian graphs
- Goyal, Misra, Panolan, Philip, Saurabh; *J. Comput. Syst. Sci. (2018)* single-exponential FPT algorithm arc deletion to Eulerian graphs

FEEDBACK ARC SET IS NP-HARD

by a reduction from vertex cover



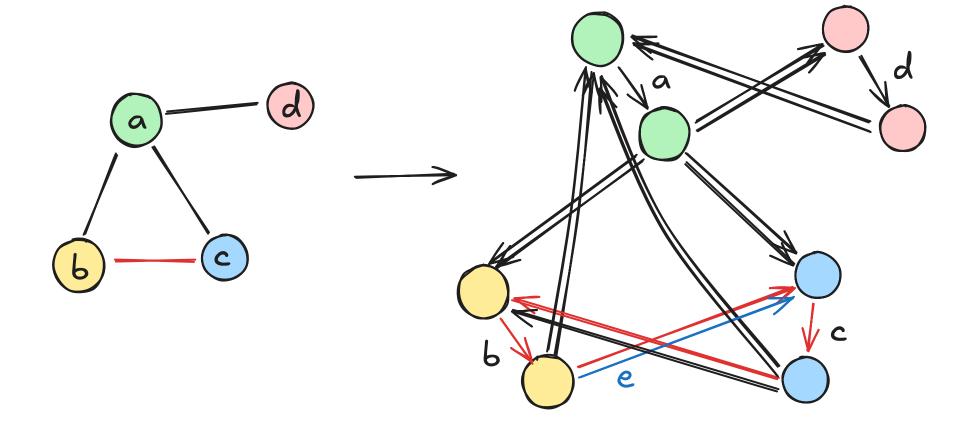
NODE COVER ∝ FEEDBACK ARC SET

$$V = N' \times \{0,1\}$$

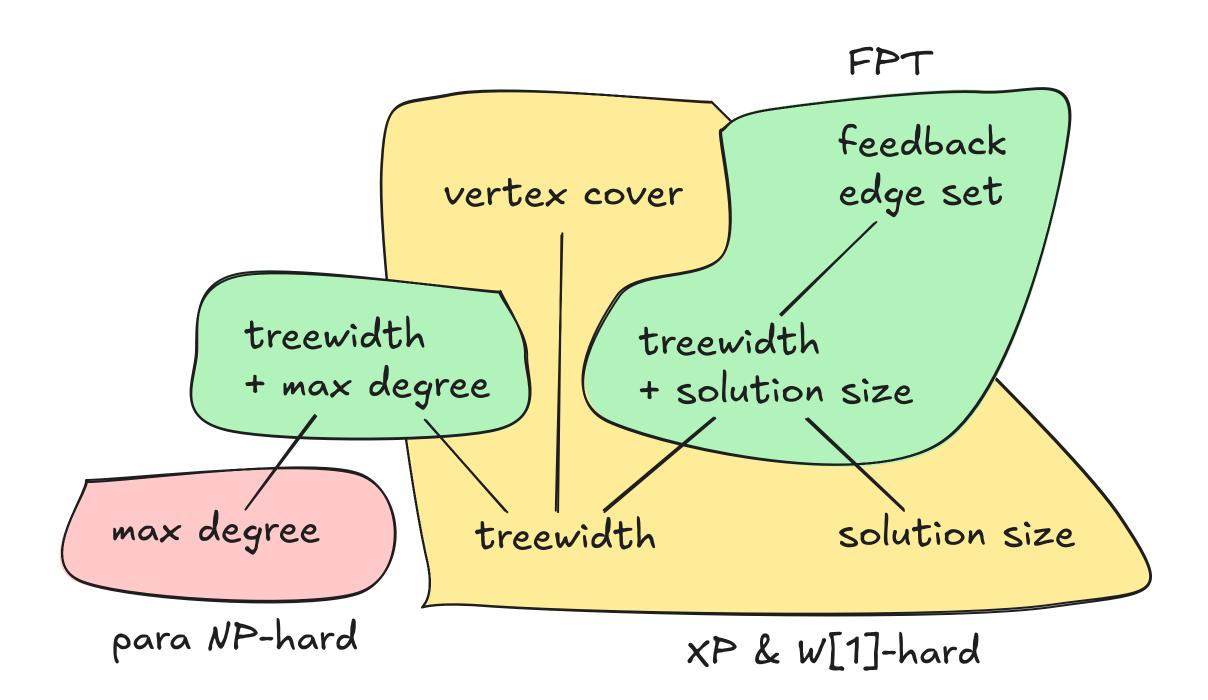
$$E = \{<,> | u \in N'\} \cup \{<,> | \{u,v\} \in A'\}$$

$$k = \ell.$$

EULERIAN STRONG COMPONENT ARC DELETION IS NP-HARD FOR MAXIMUM DEGREE 7

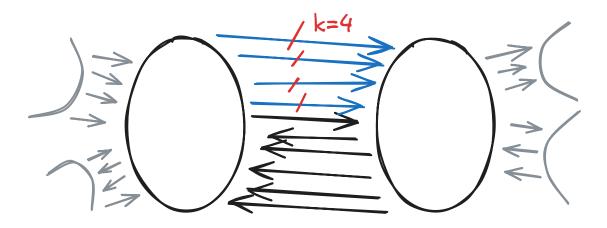


vertex cover is NP-hard for max degree 3

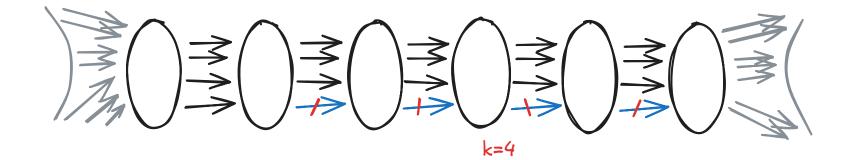


* parameters of the underlying undirected graph

well connected \rightarrow unseparable

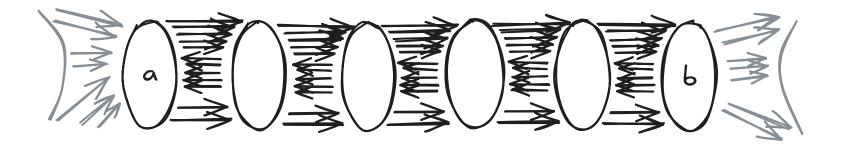


long paths \rightarrow cannot be thinned



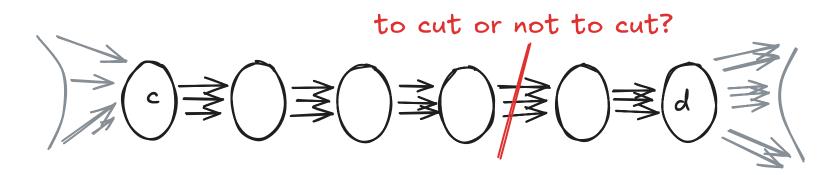
UNDELETABLE EDGES

solution has none of its edges; creates imbalance

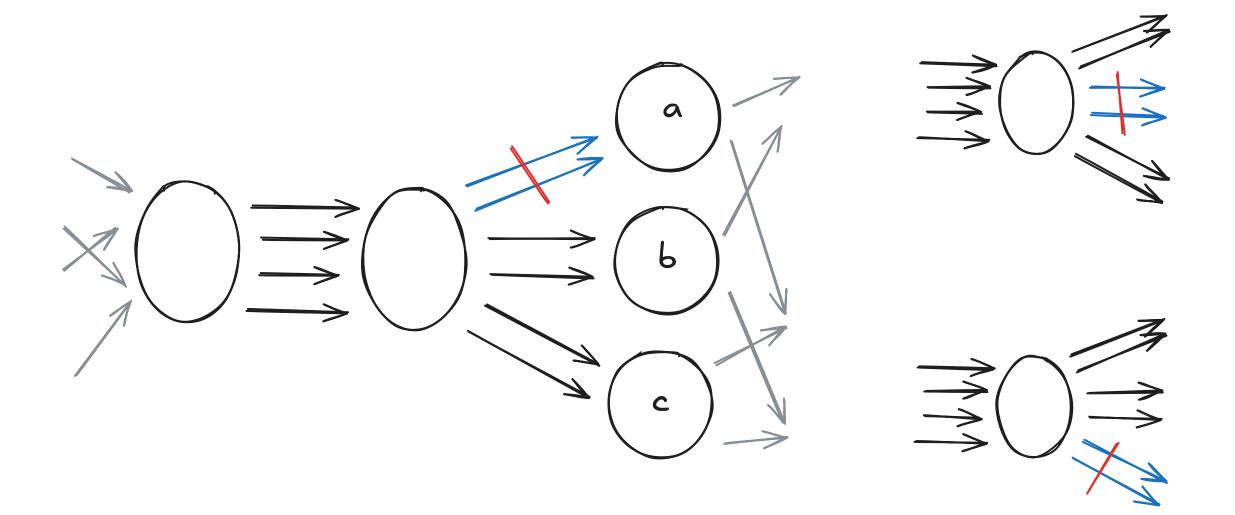


CUT ALL-OR-NONE EDGES

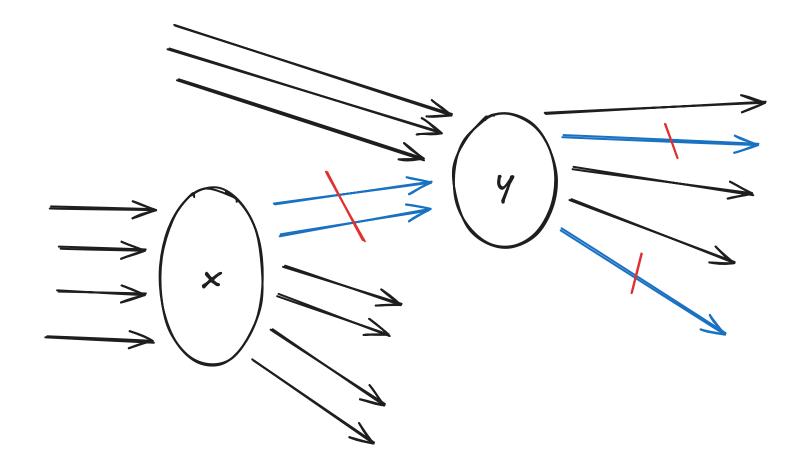
solution can only cut it



CHOICE GADGET

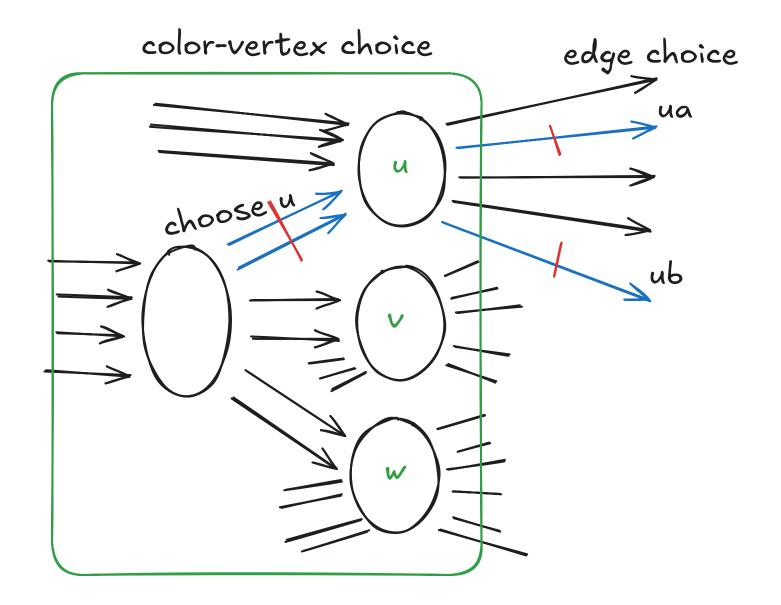


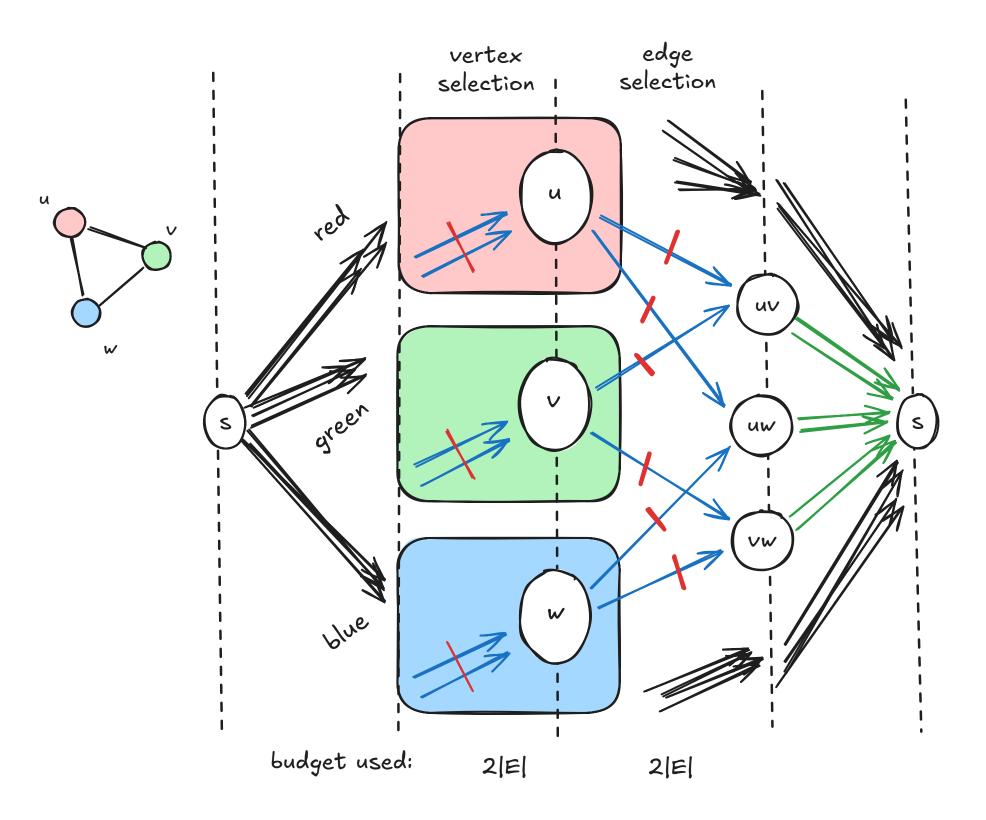
PROPAGATING CHOICES

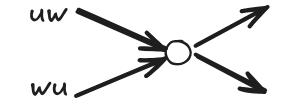


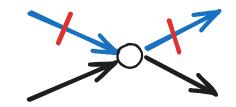
ESCAD IS W[1]-HARD BY THE SOLUTION SIZE

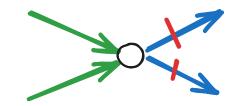
by a reduction from multicolored clique

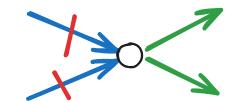


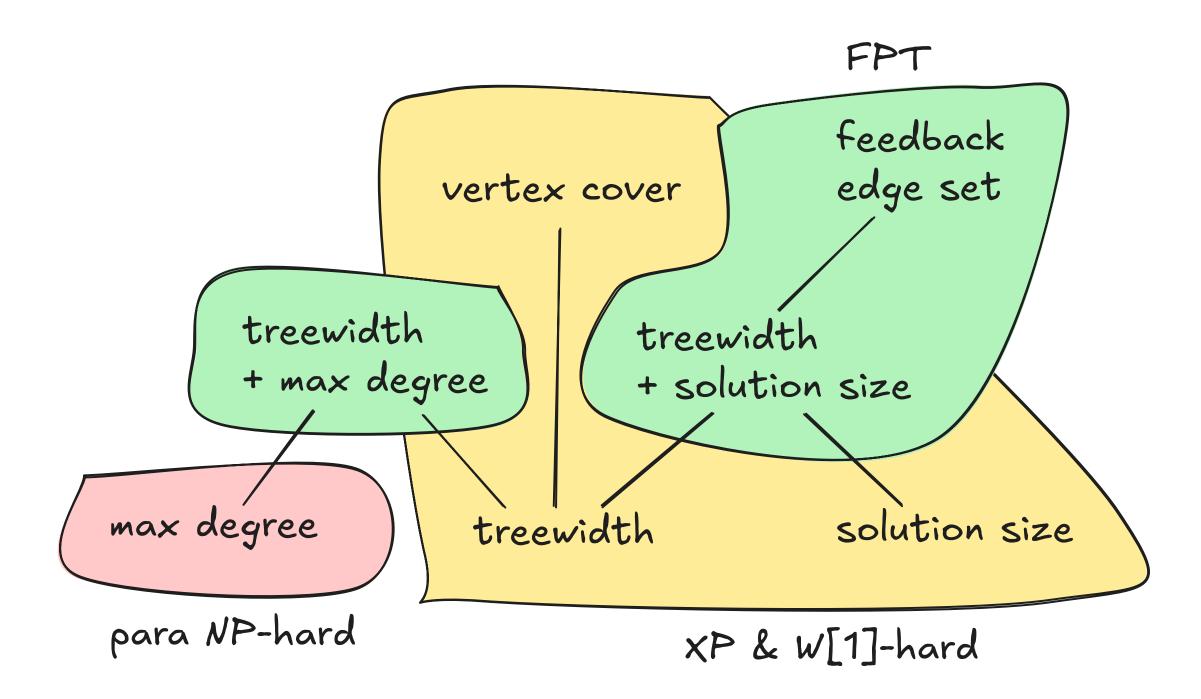










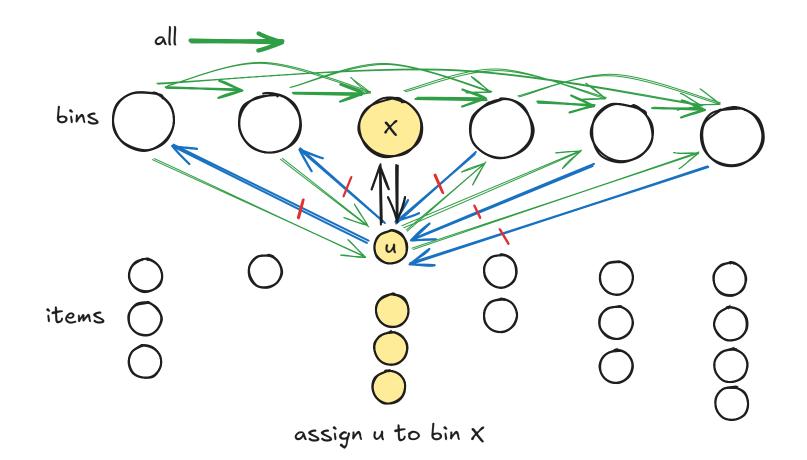


ESCAD IS $W[1]\mbox{-}HARD$ BY VERTEX COVER

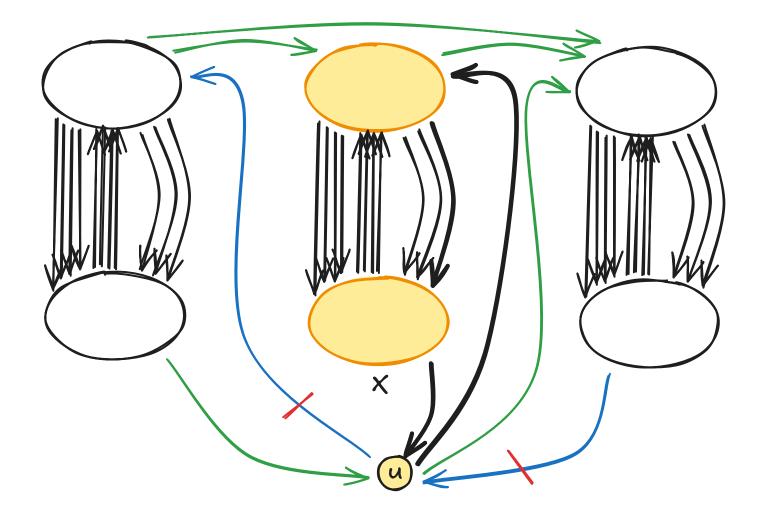
Unary Bin Packing

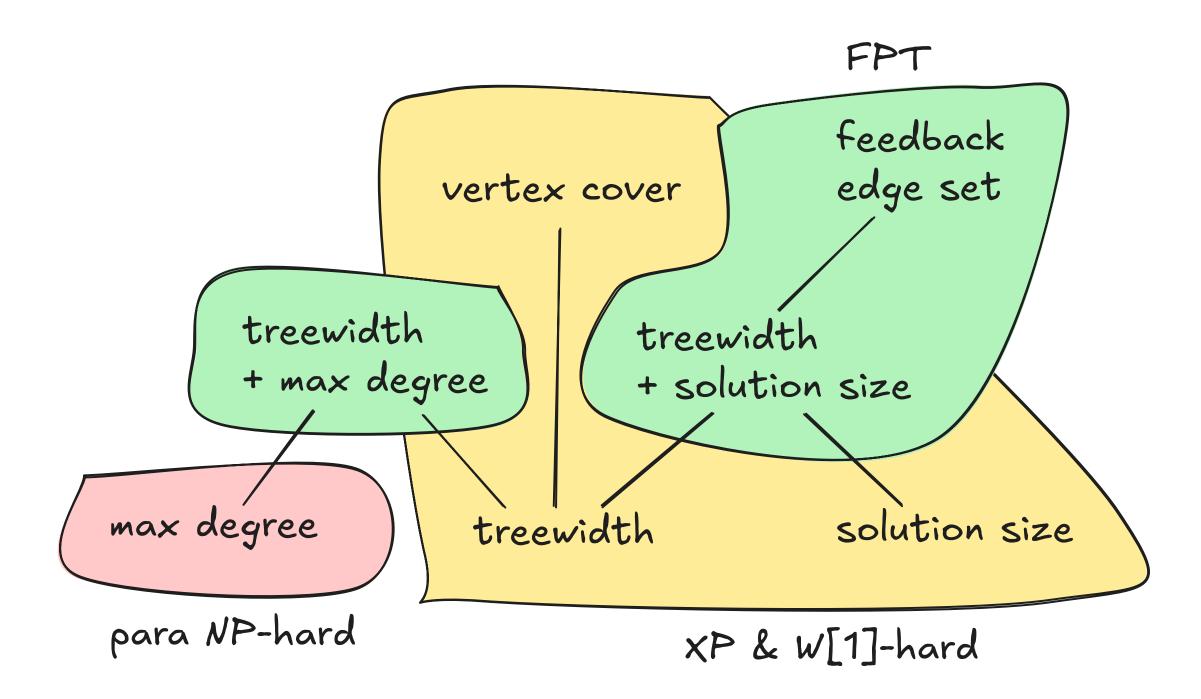
- input: A set of positive integer item sizes x₁,..., x_n encoded in unary, a pair of integers h and b.
- output: Is there a partition of [n] into h sets J_1,\ldots,J_h such that $\sum_{\ell\in J_j}x_\ell\leq b$ for every $j\in [h]$?
- Jansen, Kratsch, Marx, and Schlotter; Comput. Syst. Sci., (2013) Unary Bin Packing is W[1]-hard by the number of bins b

ESCAD IS $W[1]\mbox{-}HARD$ BY VERTEX COVER

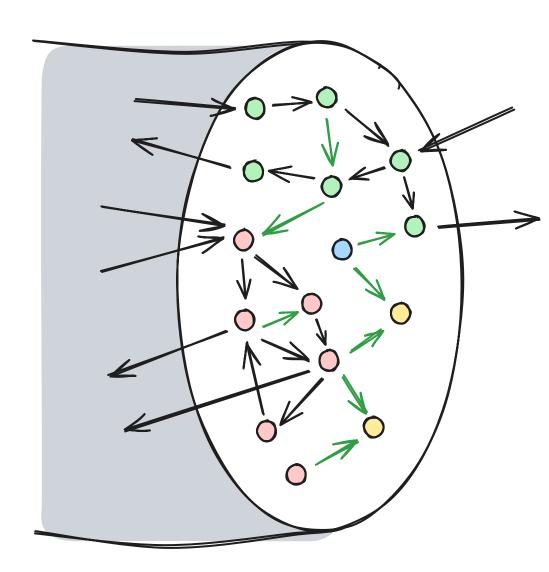


ESCAD IS $W[1]\mbox{-}\mathsf{HARD}$ BY VERTEX COVER



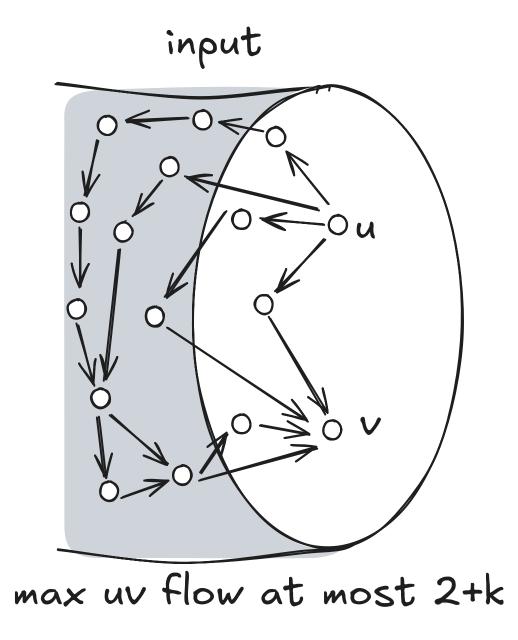


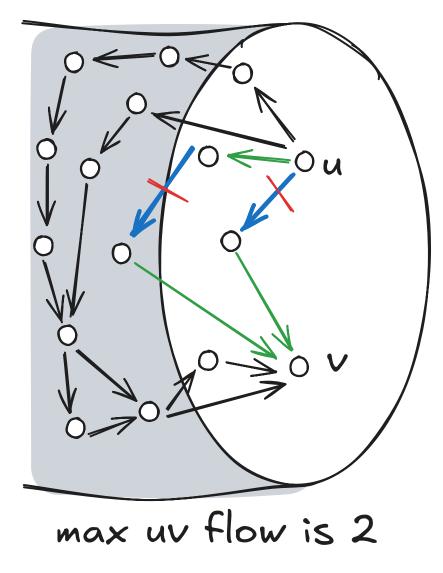
XP TREEWIDTH DYNAMIC PROGRAMMING ALGORITHM

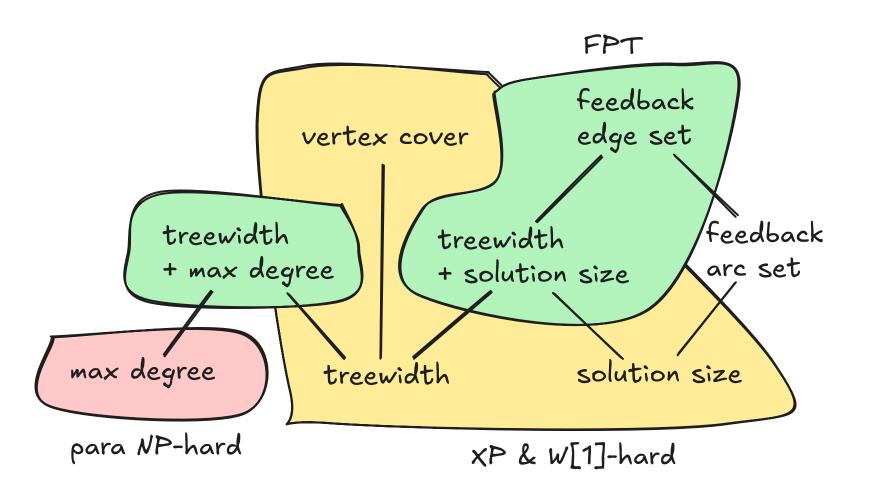


- state contains:
- reachability among vertices
 - does not exist
 - was realized
 - is realized
 - will be realized
 - complexity 4^{k^2}
- vertex balance
 - its in-degree within SCC
 - its out-degree in SCC
 - complexity n^k
- balance $\leq \max ext{ degree: } \Delta^k$

FPT BY TREEWIDTH + SOLUTION SIZE

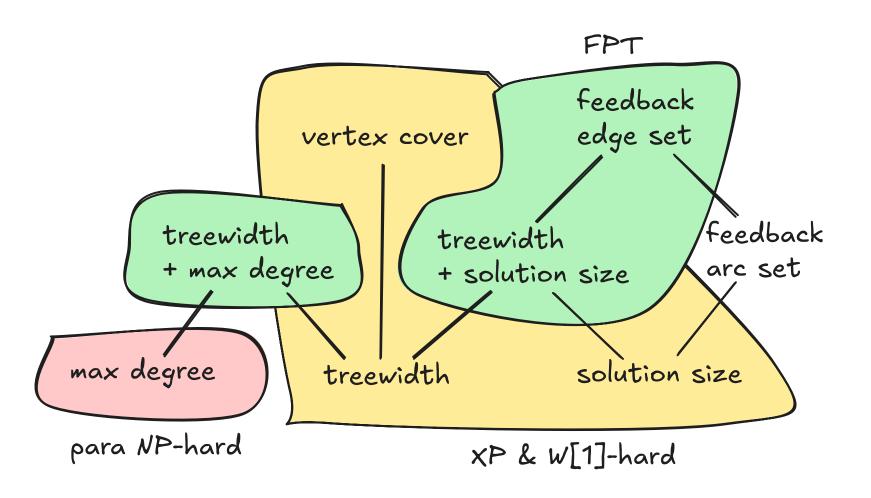






- Design (FPT)

 approximation
 algorithms for
 ESCAD?
- Is ESCAD FPT with respect to Feedback Arc Set?



- Design (FPT)

 approximation
 algorithms for
 ESCAD?
- Is ESCAD FPT with respect to Feedback Arc Set?

Thank you!