Oum2006
https://www.doi.org/10.1016/j.jctb.2005.10.006
@article{Oum2006,
author = {Sang-il Oum and Paul Seymour},
doi = {10.1016/j.jctb.2005.10.006},
issn = {0095-8956},
journaltitle = {Journal of Combinatorial Theory, Series B},
number = {4},
pages = {514--528},
title = {Approximating clique-width and branch-width},
volume = {96},
year = {2006},
}
- page 9 : rank-width – … and the \emph{rank-width} $\mathrm{rwd}(G)$ of $G$ is the branch-width of $\mathrm{cutrk}_G$.
- page 9 : rank-width $k$ implies that clique-width is $2^{\mathcal O(k)}$ – Proposition 6.3
- page 9 : clique-width $k$ upper bounds rank-width by $\mathcal O(k)$ – Proposition 6.3