rank-width
equivalent to: clique-width, boolean width, NLC-width, inf-flip-width, module-width
providers: ISGCI
Relations
Other | Relation from | Relation to | |
---|---|---|---|
acyclic chromatic number | ■ | exclusion | exclusion |
arboricity | ■ | exclusion | exclusion |
average degree | ■ | exclusion | exclusion |
average distance | ■ | exclusion | exclusion |
bandwidth | ■ | upper bound | exclusion |
bipartite | ■ | unbounded | exclusion |
bipartite number | ■ | exclusion | unknown to HOPS |
bisection bandwidth | ■ | exclusion | exclusion |
block | ■ | unknown to HOPS | exclusion |
book thickness | ■ | exclusion | exclusion |
boolean width | ■ | upper bound | upper bound |
bounded components | ■ | upper bound | exclusion |
boxicity | ■ | exclusion | exclusion |
branch width | ■ | upper bound | exclusion |
c-closure | ■ | exclusion | exclusion |
carving-width | ■ | upper bound | exclusion |
chordal | ■ | unknown to HOPS | exclusion |
chordality | ■ | exclusion | exclusion |
chromatic number | ■ | exclusion | exclusion |
clique cover number | ■ | exclusion | exclusion |
clique-tree-width | ■ | upper bound | unknown to HOPS |
clique-width | ■ | upper bound | tight bounds |
cluster | ■ | upper bound | exclusion |
co-cluster | ■ | upper bound | exclusion |
cograph | ■ | upper bound | exclusion |
complete | ■ | upper bound | exclusion |
connected | ■ | unbounded | exclusion |
contraction complexity | ■ | upper bound | exclusion |
cutwidth | ■ | upper bound | exclusion |
cycle | ■ | upper bound | exclusion |
cycles | ■ | upper bound | exclusion |
d-path-free | ■ | upper bound | exclusion |
degeneracy | ■ | exclusion | exclusion |
degree treewidth | ■ | upper bound | exclusion |
diameter | ■ | exclusion | exclusion |
diameter+max degree | ■ | upper bound | exclusion |
disconnected | ■ | unknown to HOPS | exclusion |
disjoint cycles | ■ | upper bound | exclusion |
distance to bipartite | ■ | exclusion | exclusion |
distance to block | ■ | unknown to HOPS | exclusion |
distance to bounded components | ■ | upper bound | exclusion |
distance to chordal | ■ | exclusion | exclusion |
distance to cluster | ■ | upper bound | exclusion |
distance to co-cluster | ■ | upper bound | exclusion |
distance to cograph | ■ | upper bound | exclusion |
distance to complete | ■ | upper bound | exclusion |
distance to disconnected | ■ | exclusion | exclusion |
distance to edgeless | ■ | upper bound | exclusion |
distance to forest | ■ | upper bound | exclusion |
distance to interval | ■ | exclusion | exclusion |
distance to linear forest | ■ | upper bound | exclusion |
distance to maximum degree | ■ | exclusion | exclusion |
distance to outerplanar | ■ | upper bound | exclusion |
distance to perfect | ■ | exclusion | exclusion |
distance to planar | ■ | exclusion | exclusion |
distance to stars | ■ | upper bound | exclusion |
domatic number | ■ | exclusion | exclusion |
domination number | ■ | exclusion | exclusion |
edge clique cover number | ■ | upper bound | exclusion |
edge connectivity | ■ | exclusion | exclusion |
edgeless | ■ | upper bound | exclusion |
feedback edge set | ■ | upper bound | exclusion |
feedback vertex set | ■ | upper bound | exclusion |
forest | ■ | upper bound | exclusion |
genus | ■ | exclusion | exclusion |
girth | ■ | exclusion | exclusion |
grid | ■ | unbounded | exclusion |
h-index | ■ | exclusion | exclusion |
inf-flip-width | ■ | upper bound | upper bound |
interval | ■ | unknown to HOPS | exclusion |
iterated type partitions | ■ | upper bound | exclusion |
linear clique-width | ■ | upper bound | unknown to HOPS |
linear forest | ■ | upper bound | exclusion |
linear NLC-width | ■ | upper bound | unknown to HOPS |
linear rank-width | ■ | upper bound | unknown to HOPS |
maximum clique | ■ | exclusion | exclusion |
maximum degree | ■ | exclusion | exclusion |
maximum independent set | ■ | exclusion | exclusion |
maximum induced matching | ■ | exclusion | exclusion |
maximum leaf number | ■ | upper bound | exclusion |
maximum matching | ■ | upper bound | exclusion |
maximum matching on bipartite graphs | ■ | upper bound | exclusion |
mim-width | ■ | unknown to HOPS | upper bound |
minimum degree | ■ | exclusion | exclusion |
mm-width | ■ | upper bound | exclusion |
modular-width | ■ | upper bound | exclusion |
module-width | ■ | upper bound | upper bound |
neighborhood diversity | ■ | upper bound | exclusion |
NLC-width | ■ | upper bound | upper bound |
NLCT-width | ■ | upper bound | unknown to HOPS |
odd cycle transversal | ■ | exclusion | exclusion |
outerplanar | ■ | upper bound | exclusion |
path | ■ | upper bound | exclusion |
pathwidth | ■ | upper bound | exclusion |
pathwidth+maxdegree | ■ | upper bound | exclusion |
perfect | ■ | unbounded | exclusion |
planar | ■ | unbounded | exclusion |
radius-r flip-width | ■ | exclusion | upper bound |
rank-width | ■ | equal | equal |
shrub-depth | ■ | upper bound | exclusion |
sim-width | ■ | unknown to HOPS | upper bound |
size | ■ | upper bound | exclusion |
star | ■ | upper bound | exclusion |
stars | ■ | upper bound | exclusion |
topological bandwidth | ■ | upper bound | exclusion |
tree | ■ | upper bound | exclusion |
tree-independence number | ■ | unknown to HOPS | unknown to HOPS |
treedepth | ■ | upper bound | exclusion |
treelength | ■ | exclusion | unknown to HOPS |
treewidth | ■ | upper bound | exclusion |
twin-cover number | ■ | upper bound | exclusion |
twin-width | ■ | exclusion | upper bound |
vertex connectivity | ■ | exclusion | exclusion |
vertex cover | ■ | upper bound | exclusion |
vertex integrity | ■ | upper bound | exclusion |
Results
- 2023 Flip-width: Cops and Robber on dense graphs by Toruńczyk
- inf-flip-width upper bounds rank-width by a linear function – For every graph $G$, we have $\mathrm{rankwidth}(G) \le 3 \mathrm{fw}_\infty(G)+1$ …
- rank-width upper bounds inf-flip-width by an exponential function – For every graph $G$, we have … $3 \mathrm{fw}_\infty(G)+1 \le O(2^{\mathrm{rankwidth(G)}})$.
- 2012 Twin-Cover: Beyond Vertex Cover in Parameterized Algorithmics by Ganian
- page 263 : twin-cover number upper bounds rank-width by a constant – The rank-width and linaer rank-width of graph of twin-cover $k$ are at most $k+1$.
- 2011 Boolean-width of graphs by Bui-Xuan, Telle, Vatshelle
- boolean width upper bounds rank-width by an exponential function – \textbf{Corollary 1.} For any graph $G$ and decomposition tree $(T,\gamma)$ of $G$ it holds that … $\log_2 rw(G) \le boolw(G)$ …
- rank-width upper bounds boolean width by a polynomial function – \textbf{Corollary 1.} For any graph $G$ and decomposition tree $(T,\gamma)$ of $G$ it holds that … $boolw(G) \le \frac 14 rw^2(G)+O(rw(G))$.
- 2010 The rank-width of the square grid by Jelínek
- page 2 : graph class grid has unbounded rank-width – The grid $G_{n,n}$ has rank-width equal to $n-1$.
- 2006 Approximating clique-width and branch-width by Oum, Seymour
- page 9 : rank-width – … and the \emph{rank-width} $\mathrm{rwd}(G)$ of $G$ is the branch-width of $\mathrm{cutrk}_G$.
- page 9 : rank-width upper and lower bounds clique-width by an exponential function – Proposition 6.3
- page 9 : clique-width upper bounds rank-width by a linear function – Proposition 6.3
- assumed
- rank-width is equivalent to rank-width – assumed
- unknown source
- linear rank-width upper bounds rank-width by a computable function
- branch width upper bounds rank-width by a linear function