rank-width
functionally equivalent to: clique-width, boolean width, NLC-width, module-width, radius-inf flip-width
providers: ISGCI
Relations
| Other | Relation from | Relation to | |
|---|---|---|---|
| acyclic chromatic number | ■ | exclusion | exclusion |
| admissibility | ■ | exclusion | exclusion |
| arboricity | ■ | exclusion | exclusion |
| average degree | ■ | exclusion | exclusion |
| average distance | ■ | exclusion | exclusion |
| bandwidth | ■ | upper bound | exclusion |
| bipartite | ■ | unbounded | exclusion |
| bipartite number | ■ | exclusion | exclusion |
| bisection bandwidth | ■ | exclusion | exclusion |
| block | ■ | unknown to HOPS | exclusion |
| book thickness | ■ | exclusion | exclusion |
| boolean width | ■ | upper bound | upper bound |
| bounded components | ■ | upper bound | exclusion |
| bounded expansion | ■ | exclusion | avoids |
| boxicity | ■ | exclusion | exclusion |
| branch width | ■ | upper bound | exclusion |
| c-closure | ■ | exclusion | exclusion |
| carving-width | ■ | upper bound | exclusion |
| chi-bounded | ■ | exclusion | upper bound |
| chordal | ■ | unknown to HOPS | exclusion |
| chordality | ■ | exclusion | exclusion |
| chromatic number | ■ | exclusion | exclusion |
| clique cover number | ■ | exclusion | exclusion |
| clique-tree-width | ■ | upper bound | unknown to HOPS |
| clique-width | ■ | upper bound | tight bounds |
| cluster | ■ | upper bound | exclusion |
| co-cluster | ■ | upper bound | exclusion |
| cograph | ■ | upper bound | exclusion |
| complete | ■ | upper bound | exclusion |
| connected | ■ | exclusion | avoids |
| contraction complexity | ■ | upper bound | exclusion |
| cutwidth | ■ | upper bound | exclusion |
| cycle | ■ | upper bound | exclusion |
| cycles | ■ | upper bound | exclusion |
| d-admissibility | ■ | exclusion | unknown to HOPS |
| d-path-free | ■ | upper bound | exclusion |
| degeneracy | ■ | exclusion | exclusion |
| degree treewidth | ■ | upper bound | exclusion |
| diameter | ■ | exclusion | exclusion |
| diameter+max degree | ■ | upper bound | exclusion |
| distance to bipartite | ■ | exclusion | exclusion |
| distance to block | ■ | unknown to HOPS | exclusion |
| distance to bounded components | ■ | upper bound | exclusion |
| distance to chordal | ■ | exclusion | exclusion |
| distance to cluster | ■ | upper bound | exclusion |
| distance to co-cluster | ■ | upper bound | exclusion |
| distance to cograph | ■ | upper bound | exclusion |
| distance to complete | ■ | upper bound | exclusion |
| distance to edgeless | ■ | upper bound | exclusion |
| distance to forest | ■ | upper bound | exclusion |
| distance to interval | ■ | exclusion | exclusion |
| distance to linear forest | ■ | upper bound | exclusion |
| distance to maximum degree | ■ | exclusion | exclusion |
| distance to outerplanar | ■ | upper bound | exclusion |
| distance to perfect | ■ | exclusion | exclusion |
| distance to planar | ■ | exclusion | exclusion |
| distance to stars | ■ | upper bound | exclusion |
| domatic number | ■ | exclusion | exclusion |
| domination number | ■ | exclusion | exclusion |
| domino treewidth | ■ | upper bound | exclusion |
| edge clique cover number | ■ | upper bound | exclusion |
| edge connectivity | ■ | exclusion | exclusion |
| edge-cut width | ■ | upper bound | exclusion |
| edge-treewidth | ■ | upper bound | exclusion |
| edgeless | ■ | upper bound | avoids |
| excluded minor | ■ | exclusion | avoids |
| excluded planar minor | ■ | upper bound | avoids |
| excluded top-minor | ■ | exclusion | avoids |
| feedback edge set | ■ | upper bound | exclusion |
| feedback vertex set | ■ | upper bound | exclusion |
| flip-width | ■ | exclusion | upper bound |
| forest | ■ | upper bound | exclusion |
| genus | ■ | exclusion | exclusion |
| grid | ■ | unbounded | exclusion |
| h-index | ■ | exclusion | exclusion |
| interval | ■ | unknown to HOPS | exclusion |
| iterated type partitions | ■ | upper bound | exclusion |
| linear clique-width | ■ | upper bound | unknown to HOPS |
| linear forest | ■ | upper bound | exclusion |
| linear NLC-width | ■ | upper bound | unknown to HOPS |
| linear rank-width | ■ | upper bound | unknown to HOPS |
| maximum clique | ■ | exclusion | exclusion |
| maximum degree | ■ | exclusion | exclusion |
| maximum independent set | ■ | exclusion | exclusion |
| maximum induced matching | ■ | exclusion | exclusion |
| maximum leaf number | ■ | upper bound | exclusion |
| maximum matching | ■ | upper bound | exclusion |
| maximum matching on bipartite graphs | ■ | upper bound | exclusion |
| merge-width | ■ | exclusion | upper bound |
| mim-width | ■ | unknown to HOPS | upper bound |
| minimum degree | ■ | exclusion | exclusion |
| mm-width | ■ | upper bound | exclusion |
| modular-width | ■ | upper bound | exclusion |
| module-width | ■ | upper bound | upper bound |
| monadically dependent | ■ | exclusion | upper bound |
| monadically stable | ■ | exclusion | unknown to HOPS |
| neighborhood diversity | ■ | upper bound | exclusion |
| NLC-width | ■ | upper bound | upper bound |
| NLCT-width | ■ | upper bound | unknown to HOPS |
| nowhere dense | ■ | exclusion | unknown to HOPS |
| odd cycle transversal | ■ | exclusion | exclusion |
| outerplanar | ■ | upper bound | exclusion |
| overlap treewidth | ■ | upper bound | exclusion |
| path | ■ | upper bound | exclusion |
| pathwidth | ■ | upper bound | exclusion |
| pathwidth+maxdegree | ■ | upper bound | exclusion |
| perfect | ■ | unbounded | exclusion |
| planar | ■ | unbounded | exclusion |
| radius-inf flip-width | ■ | upper bound | upper bound |
| radius-r flip-width | ■ | exclusion | upper bound |
| rank-width | ■ | equal | equal |
| series-parallel | ■ | unknown to HOPS | unknown to HOPS |
| shrub-depth | ■ | upper bound | exclusion |
| sim-width | ■ | exclusion | upper bound |
| size | ■ | upper bound | exclusion |
| slim tree-cut width | ■ | upper bound | exclusion |
| sparse twin-width | ■ | exclusion | exclusion |
| star | ■ | upper bound | exclusion |
| stars | ■ | upper bound | exclusion |
| strong coloring number | ■ | exclusion | exclusion |
| strong d-coloring number | ■ | exclusion | unknown to HOPS |
| strong inf-coloring number | ■ | upper bound | exclusion |
| topological bandwidth | ■ | upper bound | exclusion |
| tree | ■ | upper bound | exclusion |
| tree-cut width | ■ | upper bound | exclusion |
| tree-independence number | ■ | exclusion | unknown to HOPS |
| tree-partition-width | ■ | upper bound | exclusion |
| treebandwidth | ■ | upper bound | exclusion |
| treedepth | ■ | upper bound | exclusion |
| treelength | ■ | exclusion | unknown to HOPS |
| treespan | ■ | upper bound | exclusion |
| treewidth | ■ | upper bound | exclusion |
| twin-cover number | ■ | upper bound | exclusion |
| twin-width | ■ | exclusion | upper bound |
| vertex connectivity | ■ | unknown to HOPS | unknown to HOPS |
| vertex cover | ■ | upper bound | exclusion |
| vertex integrity | ■ | upper bound | exclusion |
| weak coloring number | ■ | exclusion | exclusion |
| weak d-coloring number | ■ | exclusion | unknown to HOPS |
| weak inf-coloring number | ■ | upper bound | exclusion |
| weakly sparse | ■ | exclusion | unknown to HOPS |
| weakly sparse and merge width | ■ | exclusion | exclusion |
Results
- 2023 Flip-width: Cops and Robber on dense graphs by Toruńczyk
- radius-inf flip-width upper bounds rank-width by a linear function – For every graph $G$, we have $\mathrm{rankwidth}(G) \le 3 \mathrm{fw}_\infty(G)+1$ …
- rank-width upper bounds radius-inf flip-width by an exponential function – For every graph $G$, we have … $3 \mathrm{fw}_\infty(G)+1 \le O(2^{\mathrm{rankwidth(G)}})$.
- 2012 Twin-Cover: Beyond Vertex Cover in Parameterized Algorithmics by Ganian
- page 263 : twin-cover number upper bounds rank-width by a constant – The rank-width and linaer rank-width of graph of twin-cover $k$ are at most $k+1$.
- 2012 Classes of graphs with small rank decompositions are χ-bounded by Dvořák, Král’
- page 2 : rank-width upper bounds chi-bounded by a constant – Theorem 1. For any $k$, the class of graphs with rank-width at most $k$ is $\chi$-bounded.
- 2011 Boolean-width of graphs by Bui-Xuan, Telle, Vatshelle
- boolean width upper bounds rank-width by an exponential function – \textbf{Corollary 1.} For any graph $G$ and decomposition tree $(T,\gamma)$ of $G$ it holds that … $\log_2 rw(G) \le boolw(G)$ …
- rank-width upper bounds boolean width by a polynomial function – \textbf{Corollary 1.} For any graph $G$ and decomposition tree $(T,\gamma)$ of $G$ it holds that … $boolw(G) \le \frac 14 rw^2(G)+O(rw(G))$.
- 2010 The rank-width of the square grid by Jelínek
- page 2 : graph class grid is not constant rank-width – The grid $G_{n,n}$ has rank-width equal to $n-1$.
- 2006 Approximating clique-width and branch-width by Oum, Seymour
- page 9 : rank-width – … and the \emph{rank-width} $\mathrm{rwd}(G)$ of $G$ is the branch-width of $\mathrm{cutrk}_G$.
- page 9 : rank-width upper and lower bounds clique-width by an exponential function – Proposition 6.3
- page 9 : clique-width upper bounds rank-width by a linear function – Proposition 6.3
- assumed
- rank-width is equivalent to rank-width – assumed
- unknown source
- linear rank-width upper bounds rank-width by a computable function
- branch width upper bounds rank-width by a linear function