topological bandwidth
tags: vertex order
Definition: Minimum over grpah subdivisions, bandwidth.
Relations
Other | Relation from | Relation to | |
---|---|---|---|
acyclic chromatic number | ■ | exclusion | upper bound |
admissibility | ■ | exclusion | upper bound |
arboricity | ■ | exclusion | upper bound |
average degree | ■ | exclusion | upper bound |
average distance | ■ | exclusion | unknown to HOPS |
bandwidth | ■ | upper bound | unknown to HOPS |
bipartite | ■ | unbounded | exclusion |
bipartite number | ■ | exclusion | unknown to HOPS |
bisection bandwidth | ■ | exclusion | upper bound |
block | ■ | unbounded | exclusion |
book thickness | ■ | exclusion | upper bound |
boolean width | ■ | exclusion | upper bound |
bounded components | ■ | unknown to HOPS | unknown to HOPS |
bounded expansion | ■ | exclusion | upper bound |
boxicity | ■ | exclusion | upper bound |
branch width | ■ | exclusion | upper bound |
c-closure | ■ | exclusion | unknown to HOPS |
carving-width | ■ | unknown to HOPS | unknown to HOPS |
chi-bounded | ■ | exclusion | upper bound |
chordal | ■ | unbounded | exclusion |
chordality | ■ | exclusion | upper bound |
chromatic number | ■ | exclusion | upper bound |
clique cover number | ■ | exclusion | unknown to HOPS |
clique-tree-width | ■ | exclusion | upper bound |
clique-width | ■ | exclusion | upper bound |
cluster | ■ | unbounded | exclusion |
co-cluster | ■ | unbounded | exclusion |
cograph | ■ | unbounded | exclusion |
complete | ■ | unbounded | exclusion |
connected | ■ | exclusion | avoids |
contraction complexity | ■ | unknown to HOPS | unknown to HOPS |
cutwidth | ■ | unknown to HOPS | unknown to HOPS |
cycle | ■ | upper bound | exclusion |
cycles | ■ | unknown to HOPS | unknown to HOPS |
d-admissibility | ■ | exclusion | upper bound |
d-path-free | ■ | exclusion | unknown to HOPS |
degeneracy | ■ | exclusion | upper bound |
degree treewidth | ■ | unknown to HOPS | unknown to HOPS |
diameter | ■ | exclusion | unknown to HOPS |
diameter+max degree | ■ | unknown to HOPS | unknown to HOPS |
distance to bipartite | ■ | exclusion | exclusion |
distance to block | ■ | exclusion | exclusion |
distance to bounded components | ■ | exclusion | unknown to HOPS |
distance to chordal | ■ | exclusion | exclusion |
distance to cluster | ■ | exclusion | exclusion |
distance to co-cluster | ■ | exclusion | exclusion |
distance to cograph | ■ | exclusion | exclusion |
distance to complete | ■ | exclusion | exclusion |
distance to edgeless | ■ | exclusion | exclusion |
distance to forest | ■ | exclusion | exclusion |
distance to interval | ■ | exclusion | exclusion |
distance to linear forest | ■ | exclusion | exclusion |
distance to maximum degree | ■ | exclusion | unknown to HOPS |
distance to outerplanar | ■ | exclusion | exclusion |
distance to perfect | ■ | exclusion | exclusion |
distance to planar | ■ | exclusion | exclusion |
distance to stars | ■ | exclusion | exclusion |
domatic number | ■ | exclusion | upper bound |
domination number | ■ | exclusion | unknown to HOPS |
domino treewidth | ■ | unknown to HOPS | unknown to HOPS |
edge clique cover number | ■ | exclusion | unknown to HOPS |
edge connectivity | ■ | exclusion | upper bound |
edge-cut width | ■ | exclusion | unknown to HOPS |
edge-treewidth | ■ | exclusion | unknown to HOPS |
edgeless | ■ | unknown to HOPS | avoids |
excluded minor | ■ | exclusion | unknown to HOPS |
excluded planar minor | ■ | unknown to HOPS | unknown to HOPS |
excluded top-minor | ■ | exclusion | upper bound |
feedback edge set | ■ | exclusion | exclusion |
feedback vertex set | ■ | exclusion | exclusion |
flip-width | ■ | exclusion | upper bound |
forest | ■ | unbounded | exclusion |
genus | ■ | exclusion | exclusion |
grid | ■ | unbounded | exclusion |
h-index | ■ | exclusion | unknown to HOPS |
interval | ■ | unbounded | exclusion |
iterated type partitions | ■ | exclusion | unknown to HOPS |
linear clique-width | ■ | exclusion | upper bound |
linear forest | ■ | unknown to HOPS | exclusion |
linear NLC-width | ■ | exclusion | upper bound |
linear rank-width | ■ | exclusion | upper bound |
maximum clique | ■ | exclusion | upper bound |
maximum degree | ■ | exclusion | unknown to HOPS |
maximum independent set | ■ | exclusion | unknown to HOPS |
maximum induced matching | ■ | exclusion | unknown to HOPS |
maximum leaf number | ■ | upper bound | exclusion |
maximum matching | ■ | exclusion | exclusion |
maximum matching on bipartite graphs | ■ | unknown to HOPS | exclusion |
merge-width | ■ | exclusion | upper bound |
mim-width | ■ | exclusion | upper bound |
minimum degree | ■ | exclusion | upper bound |
mm-width | ■ | exclusion | upper bound |
modular-width | ■ | exclusion | unknown to HOPS |
module-width | ■ | exclusion | upper bound |
monadically dependent | ■ | exclusion | upper bound |
monadically stable | ■ | exclusion | upper bound |
neighborhood diversity | ■ | exclusion | unknown to HOPS |
NLC-width | ■ | exclusion | upper bound |
NLCT-width | ■ | exclusion | upper bound |
nowhere dense | ■ | exclusion | upper bound |
odd cycle transversal | ■ | exclusion | exclusion |
outerplanar | ■ | unknown to HOPS | exclusion |
overlap treewidth | ■ | exclusion | unknown to HOPS |
path | ■ | unknown to HOPS | exclusion |
pathwidth | ■ | exclusion | upper bound |
pathwidth+maxdegree | ■ | unknown to HOPS | unknown to HOPS |
perfect | ■ | unbounded | exclusion |
planar | ■ | unbounded | exclusion |
radius-inf flip-width | ■ | exclusion | upper bound |
radius-r flip-width | ■ | exclusion | upper bound |
rank-width | ■ | exclusion | upper bound |
series-parallel | ■ | unknown to HOPS | unknown to HOPS |
shrub-depth | ■ | exclusion | unknown to HOPS |
sim-width | ■ | exclusion | upper bound |
size | ■ | upper bound | exclusion |
slim tree-cut width | ■ | exclusion | unknown to HOPS |
sparse twin-width | ■ | exclusion | upper bound |
star | ■ | unknown to HOPS | exclusion |
stars | ■ | unknown to HOPS | exclusion |
strong coloring number | ■ | exclusion | upper bound |
strong d-coloring number | ■ | exclusion | upper bound |
strong inf-coloring number | ■ | exclusion | upper bound |
topological bandwidth | ■ | equal | equal |
tree | ■ | unbounded | exclusion |
tree-cut width | ■ | exclusion | unknown to HOPS |
tree-independence number | ■ | exclusion | upper bound |
tree-partition-width | ■ | exclusion | unknown to HOPS |
treebandwidth | ■ | exclusion | unknown to HOPS |
treedepth | ■ | exclusion | unknown to HOPS |
treelength | ■ | exclusion | unknown to HOPS |
treespan | ■ | unknown to HOPS | unknown to HOPS |
treewidth | ■ | exclusion | upper bound |
twin-cover number | ■ | exclusion | exclusion |
twin-width | ■ | exclusion | upper bound |
vertex connectivity | ■ | unknown to HOPS | unknown to HOPS |
vertex cover | ■ | exclusion | exclusion |
vertex integrity | ■ | exclusion | unknown to HOPS |
weak coloring number | ■ | exclusion | upper bound |
weak d-coloring number | ■ | exclusion | upper bound |
weak inf-coloring number | ■ | exclusion | unknown to HOPS |
weakly sparse | ■ | exclusion | upper bound |
weakly sparse and merge width | ■ | exclusion | upper bound |
Results
- 2013 The Power of Data Reduction: Kernels for Fundamental Graph Problems by Jansen
- topological bandwidth – The \emph{topological bandwidth} of a graph $G$ is the minimum bandwidth over all subdivisions of $G$
- 1998 A partial $k$-arboretum of graphs with bounded treewidth by Bodlaender
- page 22 : topological bandwidth – The \emph{topological bandwidth} of a graph $G$ is the minimum bandwidth over all graphs $G’$ which are obtained by addition of an arbitrary number of vertices along edges of $G$.
- page 23 : topological bandwidth upper bounds pathwidth by a linear function – Theorem 45. For every graph $G$, the pathwidth of $G$ is at most the topological band-width of $G$.
- assumed
- bandwidth upper bounds topological bandwidth by a linear function – By definition
- topological bandwidth is equivalent to topological bandwidth – assumed
- unknown source
- topological bandwidth upper bounds bisection bandwidth by a linear function – Order vertices by their bandwidth integer. We split the graph in the middle of this ordering. There are at most roughly $k^2/2$ edges over this split.