topological bandwidth
tags: vertex order
Relations
Other | Relation from | Relation to | |
---|---|---|---|
acyclic chromatic number | ■ | exclusion | upper bound |
arboricity | ■ | exclusion | upper bound |
average degree | ■ | exclusion | upper bound |
average distance | ■ | exclusion | exclusion |
bandwidth | ■ | upper bound | unknown to HOPS |
bipartite | ■ | unbounded | exclusion |
bipartite number | ■ | exclusion | unknown to HOPS |
bisection bandwidth | ■ | exclusion | upper bound |
block | ■ | unbounded | exclusion |
book thickness | ■ | exclusion | upper bound |
boolean width | ■ | exclusion | upper bound |
bounded components | ■ | unknown to HOPS | exclusion |
boxicity | ■ | exclusion | upper bound |
branch width | ■ | exclusion | upper bound |
c-closure | ■ | exclusion | unknown to HOPS |
carving-width | ■ | unknown to HOPS | unknown to HOPS |
chordal | ■ | unbounded | exclusion |
chordality | ■ | exclusion | upper bound |
chromatic number | ■ | exclusion | upper bound |
clique cover number | ■ | exclusion | exclusion |
clique-tree-width | ■ | exclusion | upper bound |
clique-width | ■ | exclusion | upper bound |
cluster | ■ | unbounded | exclusion |
co-cluster | ■ | unbounded | exclusion |
cograph | ■ | unbounded | exclusion |
complete | ■ | unbounded | exclusion |
connected | ■ | unbounded | exclusion |
contraction complexity | ■ | unknown to HOPS | unknown to HOPS |
cutwidth | ■ | unknown to HOPS | unknown to HOPS |
cycle | ■ | upper bound | exclusion |
cycles | ■ | unknown to HOPS | exclusion |
d-path-free | ■ | exclusion | exclusion |
degeneracy | ■ | exclusion | upper bound |
degree treewidth | ■ | unknown to HOPS | unknown to HOPS |
diameter | ■ | exclusion | exclusion |
diameter+max degree | ■ | unknown to HOPS | exclusion |
disconnected | ■ | unknown to HOPS | unknown to HOPS |
disjoint cycles | ■ | unbounded | exclusion |
distance to bipartite | ■ | exclusion | exclusion |
distance to block | ■ | exclusion | exclusion |
distance to bounded components | ■ | exclusion | exclusion |
distance to chordal | ■ | exclusion | exclusion |
distance to cluster | ■ | exclusion | exclusion |
distance to co-cluster | ■ | exclusion | exclusion |
distance to cograph | ■ | exclusion | exclusion |
distance to complete | ■ | exclusion | exclusion |
distance to disconnected | ■ | exclusion | upper bound |
distance to edgeless | ■ | exclusion | exclusion |
distance to forest | ■ | exclusion | exclusion |
distance to interval | ■ | exclusion | exclusion |
distance to linear forest | ■ | exclusion | exclusion |
distance to maximum degree | ■ | exclusion | unknown to HOPS |
distance to outerplanar | ■ | exclusion | exclusion |
distance to perfect | ■ | exclusion | exclusion |
distance to planar | ■ | exclusion | exclusion |
distance to stars | ■ | exclusion | exclusion |
domatic number | ■ | exclusion | upper bound |
domination number | ■ | exclusion | exclusion |
edge clique cover number | ■ | exclusion | exclusion |
edge connectivity | ■ | exclusion | upper bound |
edgeless | ■ | unknown to HOPS | exclusion |
feedback edge set | ■ | exclusion | exclusion |
feedback vertex set | ■ | exclusion | exclusion |
forest | ■ | unbounded | exclusion |
genus | ■ | exclusion | exclusion |
girth | ■ | exclusion | exclusion |
grid | ■ | unbounded | exclusion |
h-index | ■ | exclusion | unknown to HOPS |
inf-flip-width | ■ | exclusion | upper bound |
interval | ■ | unbounded | exclusion |
iterated type partitions | ■ | exclusion | exclusion |
linear clique-width | ■ | exclusion | upper bound |
linear forest | ■ | unknown to HOPS | exclusion |
linear NLC-width | ■ | exclusion | upper bound |
linear rank-width | ■ | exclusion | upper bound |
maximum clique | ■ | exclusion | upper bound |
maximum degree | ■ | exclusion | unknown to HOPS |
maximum independent set | ■ | exclusion | exclusion |
maximum induced matching | ■ | exclusion | exclusion |
maximum leaf number | ■ | upper bound | exclusion |
maximum matching | ■ | exclusion | exclusion |
maximum matching on bipartite graphs | ■ | unknown to HOPS | exclusion |
mim-width | ■ | exclusion | upper bound |
minimum degree | ■ | exclusion | upper bound |
mm-width | ■ | exclusion | upper bound |
modular-width | ■ | exclusion | exclusion |
module-width | ■ | exclusion | upper bound |
neighborhood diversity | ■ | exclusion | exclusion |
NLC-width | ■ | exclusion | upper bound |
NLCT-width | ■ | exclusion | upper bound |
odd cycle transversal | ■ | exclusion | exclusion |
outerplanar | ■ | unbounded | exclusion |
path | ■ | unknown to HOPS | exclusion |
pathwidth | ■ | exclusion | upper bound |
pathwidth+maxdegree | ■ | unknown to HOPS | unknown to HOPS |
perfect | ■ | unbounded | exclusion |
planar | ■ | unbounded | exclusion |
radius-r flip-width | ■ | exclusion | upper bound |
rank-width | ■ | exclusion | upper bound |
shrub-depth | ■ | exclusion | unknown to HOPS |
sim-width | ■ | exclusion | upper bound |
size | ■ | upper bound | exclusion |
star | ■ | unknown to HOPS | exclusion |
stars | ■ | unknown to HOPS | exclusion |
topological bandwidth | ■ | equal | equal |
tree | ■ | unbounded | exclusion |
tree-independence number | ■ | exclusion | upper bound |
treedepth | ■ | exclusion | exclusion |
treelength | ■ | exclusion | unknown to HOPS |
treewidth | ■ | exclusion | upper bound |
twin-cover number | ■ | exclusion | exclusion |
twin-width | ■ | exclusion | upper bound |
vertex connectivity | ■ | exclusion | upper bound |
vertex cover | ■ | exclusion | exclusion |
vertex integrity | ■ | exclusion | exclusion |
Results
- 2013 The Power of Data Reduction: Kernels for Fundamental Graph Problems by Jansen
- topological bandwidth – The \emph{topological bandwidth} of a graph $G$ is the minimum bandwidth over all subdivisions of $G$
- 1998 A partial $k$-arboretum of graphs with bounded treewidth by Bodlaender
- page 22 : topological bandwidth – The \emph{topological bandwidth} of a graph $G$ is the minimum bandwidth over all graphs $G’$ which are obtained by addition of an arbitrary number of vertices along edges of $G$.
- page 23 : topological bandwidth upper bounds pathwidth by a linear function – Theorem 45. For every graph $G$, the pathwidth of $G$ is at most the topological band-width of $G$.
- assumed
- bandwidth upper bounds topological bandwidth by a linear function – By definition
- topological bandwidth is equivalent to topological bandwidth – assumed
- unknown source
- topological bandwidth upper bounds bisection bandwidth by a linear function – Order vertices by their bandwidth integer. We split the graph in the middle of this ordering. There are at most roughly $k^2/2$ edges over this split.