clique-width
abbr: cw
functionally equivalent to: module-width, NLC-width, radius-inf flip-width, rank-width, boolean width
providers: ISGCI
Definition: Minimum number of labels (colors) required to construct the graph using the following operations for constructing labeled graphs: 1) create a new labeled vertex, 2) disjoint union, 3) complete join between two labels, and 4) change all vertices from one to another label.
Clique-width is a generalization of treewidth to dense graphs. There are quite a few parameters that are functionally equivalent to cilque-width; notably rank-width which has a better bound for graphs of bounded treewidth.
Relations
| Other | Relation from | Relation to | |
|---|---|---|---|
| acyclic chromatic number | ■ | exclusion | exclusion |
| admissibility | ■ | exclusion | exclusion |
| arboricity | ■ | exclusion | exclusion |
| average degree | ■ | exclusion | exclusion |
| average distance | ■ | exclusion | exclusion |
| bandwidth | ■ | upper bound | exclusion |
| bipartite | ■ | unbounded | exclusion |
| bipartite number | ■ | exclusion | exclusion |
| bisection bandwidth | ■ | exclusion | exclusion |
| block | ■ | unknown to HOPS | exclusion |
| book thickness | ■ | exclusion | exclusion |
| boolean width | ■ | upper bound | upper bound |
| bounded components | ■ | upper bound | exclusion |
| bounded expansion | ■ | exclusion | avoids |
| boxicity | ■ | exclusion | exclusion |
| branch width | ■ | upper bound | exclusion |
| c-closure | ■ | exclusion | exclusion |
| carving-width | ■ | upper bound | exclusion |
| chi-bounded | ■ | exclusion | upper bound |
| chordal | ■ | unknown to HOPS | exclusion |
| chordality | ■ | exclusion | exclusion |
| chromatic number | ■ | exclusion | exclusion |
| clique cover number | ■ | exclusion | exclusion |
| clique-tree-width | ■ | upper bound | unknown to HOPS |
| clique-width | ■ | equal | equal |
| cluster | ■ | upper bound | exclusion |
| co-cluster | ■ | upper bound | exclusion |
| cograph | ■ | upper bound | exclusion |
| complete | ■ | upper bound | exclusion |
| connected | ■ | exclusion | avoids |
| contraction complexity | ■ | upper bound | exclusion |
| cutwidth | ■ | upper bound | exclusion |
| cycle | ■ | upper bound | exclusion |
| cycles | ■ | upper bound | exclusion |
| d-admissibility | ■ | exclusion | unknown to HOPS |
| d-path-free | ■ | upper bound | exclusion |
| degeneracy | ■ | exclusion | exclusion |
| degree treewidth | ■ | upper bound | exclusion |
| diameter | ■ | exclusion | exclusion |
| diameter+max degree | ■ | upper bound | exclusion |
| distance to bipartite | ■ | exclusion | exclusion |
| distance to block | ■ | unknown to HOPS | exclusion |
| distance to bounded components | ■ | upper bound | exclusion |
| distance to chordal | ■ | exclusion | exclusion |
| distance to cluster | ■ | upper bound | exclusion |
| distance to co-cluster | ■ | upper bound | exclusion |
| distance to cograph | ■ | upper bound | exclusion |
| distance to complete | ■ | upper bound | exclusion |
| distance to edgeless | ■ | upper bound | exclusion |
| distance to forest | ■ | upper bound | exclusion |
| distance to interval | ■ | exclusion | exclusion |
| distance to linear forest | ■ | upper bound | exclusion |
| distance to maximum degree | ■ | exclusion | exclusion |
| distance to outerplanar | ■ | upper bound | exclusion |
| distance to perfect | ■ | exclusion | exclusion |
| distance to planar | ■ | exclusion | exclusion |
| distance to stars | ■ | upper bound | exclusion |
| domatic number | ■ | exclusion | exclusion |
| domination number | ■ | exclusion | exclusion |
| domino treewidth | ■ | upper bound | exclusion |
| edge clique cover number | ■ | upper bound | exclusion |
| edge connectivity | ■ | exclusion | exclusion |
| edge-cut width | ■ | upper bound | exclusion |
| edge-treewidth | ■ | upper bound | exclusion |
| edgeless | ■ | upper bound | avoids |
| excluded minor | ■ | exclusion | avoids |
| excluded planar minor | ■ | upper bound | avoids |
| excluded top-minor | ■ | exclusion | avoids |
| feedback edge set | ■ | upper bound | exclusion |
| feedback vertex set | ■ | upper bound | exclusion |
| flip-width | ■ | exclusion | upper bound |
| forest | ■ | upper bound | exclusion |
| genus | ■ | exclusion | exclusion |
| grid | ■ | unbounded | exclusion |
| h-index | ■ | exclusion | exclusion |
| interval | ■ | unknown to HOPS | exclusion |
| iterated type partitions | ■ | upper bound | exclusion |
| linear clique-width | ■ | upper bound | unknown to HOPS |
| linear forest | ■ | upper bound | exclusion |
| linear NLC-width | ■ | upper bound | unknown to HOPS |
| linear rank-width | ■ | upper bound | unknown to HOPS |
| maximum clique | ■ | exclusion | exclusion |
| maximum degree | ■ | exclusion | exclusion |
| maximum independent set | ■ | exclusion | exclusion |
| maximum induced matching | ■ | exclusion | exclusion |
| maximum leaf number | ■ | upper bound | exclusion |
| maximum matching | ■ | upper bound | exclusion |
| maximum matching on bipartite graphs | ■ | upper bound | exclusion |
| merge-width | ■ | exclusion | upper bound |
| mim-width | ■ | unknown to HOPS | upper bound |
| minimum degree | ■ | exclusion | exclusion |
| mm-width | ■ | upper bound | exclusion |
| modular-width | ■ | upper bound | exclusion |
| module-width | ■ | upper bound | upper bound |
| monadically dependent | ■ | exclusion | upper bound |
| monadically stable | ■ | exclusion | unknown to HOPS |
| neighborhood diversity | ■ | upper bound | exclusion |
| NLC-width | ■ | upper bound | upper bound |
| NLCT-width | ■ | upper bound | unknown to HOPS |
| nowhere dense | ■ | exclusion | unknown to HOPS |
| odd cycle transversal | ■ | exclusion | exclusion |
| outerplanar | ■ | upper bound | exclusion |
| overlap treewidth | ■ | upper bound | exclusion |
| path | ■ | upper bound | exclusion |
| pathwidth | ■ | upper bound | exclusion |
| pathwidth+maxdegree | ■ | upper bound | exclusion |
| perfect | ■ | unbounded | exclusion |
| planar | ■ | unbounded | exclusion |
| radius-inf flip-width | ■ | upper bound | upper bound |
| radius-r flip-width | ■ | exclusion | upper bound |
| rank-width | ■ | tight bounds | upper bound |
| series-parallel | ■ | unknown to HOPS | unknown to HOPS |
| shrub-depth | ■ | upper bound | exclusion |
| sim-width | ■ | exclusion | upper bound |
| size | ■ | upper bound | exclusion |
| slim tree-cut width | ■ | upper bound | exclusion |
| sparse twin-width | ■ | exclusion | exclusion |
| star | ■ | upper bound | exclusion |
| stars | ■ | upper bound | exclusion |
| strong coloring number | ■ | exclusion | exclusion |
| strong d-coloring number | ■ | exclusion | unknown to HOPS |
| strong inf-coloring number | ■ | upper bound | exclusion |
| topological bandwidth | ■ | upper bound | exclusion |
| tree | ■ | upper bound | exclusion |
| tree-cut width | ■ | upper bound | exclusion |
| tree-independence number | ■ | exclusion | unknown to HOPS |
| tree-partition-width | ■ | upper bound | exclusion |
| treebandwidth | ■ | upper bound | exclusion |
| treedepth | ■ | upper bound | exclusion |
| treelength | ■ | exclusion | unknown to HOPS |
| treespan | ■ | upper bound | exclusion |
| treewidth | ■ | upper bound | exclusion |
| twin-cover number | ■ | upper bound | exclusion |
| twin-width | ■ | exclusion | upper bound |
| vertex connectivity | ■ | unknown to HOPS | unknown to HOPS |
| vertex cover | ■ | upper bound | exclusion |
| vertex integrity | ■ | upper bound | exclusion |
| weak coloring number | ■ | exclusion | exclusion |
| weak d-coloring number | ■ | exclusion | unknown to HOPS |
| weak inf-coloring number | ■ | upper bound | exclusion |
| weakly sparse | ■ | exclusion | unknown to HOPS |
| weakly sparse and merge width | ■ | exclusion | exclusion |
Results
- 2022 Expanding the Graph Parameter Hierarchy by Tran
- page 25 : modular-width upper bounds clique-width by a computable function – Proposition 4.6. Modular-width strictly upper bounds Clique-width.
- page 25 : graph classes with bounded clique-width are not bounded modular-width – Proposition 4.6. Modular-width strictly upper bounds Clique-width.
- page 36 : clique-width upper bounds twin-width by a tower function – Proposition 6.2. Clique-width strictly upper bounds Twin-width.
- page 36 : graph classes with bounded twin-width are not bounded clique-width – Proposition 6.2. Clique-width strictly upper bounds Twin-width.
- 2019 The Graph Parameter Hierarchy by Sorge
- page 9 : distance to cograph upper bounds clique-width by an exponential function – Lemma 4.17. The distance $c$ to a cograph upper bounds the cliquewidth $q$. We have $q \le 2^{3+c}-1$.
- 2012 Twin-Cover: Beyond Vertex Cover in Parameterized Algorithmics by Ganian
- page 263 : twin-cover number upper bounds clique-width by a constant – The clique-width of graphs of twin-cover $k$ is at most $k+2$.
- 2006 Approximating clique-width and branch-width by Oum, Seymour
- page 9 : rank-width upper and lower bounds clique-width by an exponential function – Proposition 6.3
- page 9 : clique-width upper bounds rank-width by a linear function – Proposition 6.3
- 2005 On the relationship between NLC-width and linear NLC-width by Gurski, Wanke
- page 8 : clique-tree-width upper bounds clique-width by a linear function
- 2000 Upper bounds to the clique width of graphs by Courcelle, Olariu
- page 18 : treewidth upper bounds clique-width by an exponential function – We will prove that for every undirected graph $G$, $cwd(G) \le 2^{twd(G)+1}+1$ …
- 1998 Clique-decomposition, NLC-decomposition and modular decomposition—relationships and results for random graphs by Johansson
- clique-width upper bounds NLC-width by a linear function
- NLC-width upper bounds clique-width by a linear function
- Comparing Graph Parameters by Schröder
- page 16 : graph classes with bounded clique cover number are not bounded clique-width – Proposition 3.9
- page 23 : graph classes with bounded genus are not bounded clique-width – Proposition 3.17
- page 23 : graph classes with bounded distance to planar are not bounded clique-width – Proposition 3.17
- page 28 : graph classes with bounded maximum degree are not bounded clique-width – Proposition 3.26
- page 28 : graph classes with bounded distance to bipartite are not bounded clique-width – Proposition 3.26
- page 33 : graph classes with bounded bisection bandwidth are not bounded clique-width – Proposition 3.32
- assumed
- clique-width is equivalent to clique-width – assumed
- unknown source
- linear clique-width upper bounds clique-width by a linear function
- clique-width upper bounds boolean width by a linear function
- boolean width upper bounds clique-width by an exponential function
- module-width upper bounds clique-width by a computable function
- clique-width upper bounds module-width by a computable function
- modular-width upper bounds clique-width by a computable function
- clique-width upper bounds mim-width by a linear function
- clique-width upper bounds twin-width by a tower function
- clique-width upper bounds chi-bounded by a constant