clique-width
abbr: cw
equivalent to: module-width, NLC-width, clique-width, inf-flip-width, rank-width, boolean width
providers: ISGCI
Relations
Other | Relation from | Relation to |
---|---|---|
acyclic chromatic number | exclusion | exclusion |
arboricity | exclusion | exclusion |
average degree | exclusion | exclusion |
average distance | exclusion | exclusion |
bandwidth | upper bound | exclusion |
bipartite | unbounded | exclusion |
bipartite number | exclusion | unknown to HOPS |
bisection bandwidth | exclusion | exclusion |
block | unknown to HOPS | exclusion |
book thickness | exclusion | exclusion |
boolean width | upper bound | upper bound |
bounded components | upper bound | exclusion |
boxicity | exclusion | exclusion |
branch width | upper bound | exclusion |
c-closure | exclusion | exclusion |
carving-width | upper bound | exclusion |
chordal | unknown to HOPS | exclusion |
chordality | exclusion | exclusion |
chromatic number | exclusion | exclusion |
clique cover number | exclusion | exclusion |
clique-tree-width | upper bound | unknown to HOPS |
cluster | constant | exclusion |
co-cluster | constant | exclusion |
cograph | constant | exclusion |
complete | constant | exclusion |
connected | unbounded | unknown to HOPS |
cutwidth | upper bound | exclusion |
cycle | constant | exclusion |
cycles | constant | exclusion |
d-path-free | upper bound | exclusion |
degeneracy | exclusion | exclusion |
degree treewidth | upper bound | exclusion |
diameter | exclusion | exclusion |
diameter+max degree | upper bound | exclusion |
disjoint cycles | constant | exclusion |
distance to bipartite | exclusion | exclusion |
distance to block | unknown to HOPS | exclusion |
distance to bounded components | upper bound | exclusion |
distance to chordal | exclusion | exclusion |
distance to cluster | unknown to HOPS | exclusion |
distance to co-cluster | upper bound | exclusion |
distance to cograph | upper bound | exclusion |
distance to complete | upper bound | exclusion |
distance to edgeless | upper bound | exclusion |
distance to forest | upper bound | exclusion |
distance to interval | exclusion | exclusion |
distance to linear forest | upper bound | exclusion |
distance to maximum degree | exclusion | exclusion |
distance to outerplanar | upper bound | exclusion |
distance to perfect | exclusion | exclusion |
distance to planar | exclusion | exclusion |
distance to stars | upper bound | exclusion |
domatic number | exclusion | exclusion |
domination number | exclusion | exclusion |
edge clique cover number | upper bound | exclusion |
edge connectivity | exclusion | exclusion |
edgeless | constant | exclusion |
feedback edge set | upper bound | exclusion |
feedback vertex set | upper bound | exclusion |
forest | constant | exclusion |
genus | exclusion | exclusion |
girth | exclusion | exclusion |
grid | unbounded | exclusion |
h-index | exclusion | exclusion |
inf-flip-width | upper bound | upper bound |
interval | unknown to HOPS | exclusion |
iterated type partitions | upper bound | exclusion |
linear clique-width | upper bound | unknown to HOPS |
linear forest | constant | exclusion |
linear NLC-width | upper bound | unknown to HOPS |
linear rank-width | upper bound | unknown to HOPS |
maximum clique | exclusion | exclusion |
maximum degree | exclusion | exclusion |
maximum independent set | exclusion | exclusion |
maximum induced matching | exclusion | exclusion |
maximum leaf number | upper bound | exclusion |
maximum matching | unknown to HOPS | exclusion |
maximum matching on bipartite graphs | upper bound | exclusion |
mim-width | unknown to HOPS | upper bound |
minimum degree | exclusion | exclusion |
mm-width | upper bound | exclusion |
modular-width | upper bound | exclusion |
module-width | upper bound | upper bound |
neighborhood diversity | upper bound | exclusion |
NLC-width | upper bound | upper bound |
NLCT-width | upper bound | unknown to HOPS |
odd cycle transversal | exclusion | exclusion |
outerplanar | constant | exclusion |
path | constant | exclusion |
pathwidth | upper bound | exclusion |
pathwidth+maxdegree | upper bound | exclusion |
perfect | unbounded | exclusion |
planar | unbounded | exclusion |
radius-r flip-width | exclusion | upper bound |
rank-width | tight bounds | upper bound |
shrub-depth | upper bound | exclusion |
sim-width | unknown to HOPS | upper bound |
star | constant | exclusion |
stars | constant | exclusion |
topological bandwidth | upper bound | exclusion |
tree | constant | exclusion |
tree-independence number | unknown to HOPS | unknown to HOPS |
treedepth | upper bound | exclusion |
treelength | exclusion | unknown to HOPS |
treewidth | upper bound | exclusion |
twin-cover number | upper bound | exclusion |
twin-width | exclusion | upper bound |
vertex connectivity | unknown to HOPS | exclusion |
vertex cover | upper bound | exclusion |
vertex integrity | upper bound | exclusion |
Results
- 2022 Expanding the Graph Parameter Hierarchy by Tran
- page 25 : modular-width upper bounds clique-width by a linear function – Proposition 4.6. Modular-width strictly upper bounds Clique-width.
- page 25 : bounded clique-width does not imply bounded modular-width – Proposition 4.6. Modular-width strictly upper bounds Clique-width.
- page 36 : clique-width upper bounds twin-width by an exponential function – Proposition 6.2. Clique-width strictly upper bounds Twin-width.
- page 36 : bounded twin-width does not imply bounded clique-width – Proposition 6.2. Clique-width strictly upper bounds Twin-width.
- 2019 The Graph Parameter Hierarchy by Sorge
- page 9 : distance to cograph upper bounds clique-width by an exponential function – Lemma 4.17. The distance $c$ to a cograph upper bounds the cliquewidth $q$. We have $q \le 2^{3+c}-1$.
- 2012 Twin-Cover: Beyond Vertex Cover in Parameterized Algorithmics by Ganian
- page 263 : twin-cover number upper bounds clique-width by a linear function – The clique-width of graphs of twin-cover $k$ is at most $k+2$.
- 2006 Approximating clique-width and branch-width by Oum, Seymour
- page 9 : rank-width upper and lower bounds clique-width by an exponential function – Proposition 6.3
- page 9 : clique-width upper bounds rank-width by a linear function – Proposition 6.3
- 2005 On the relationship between NLC-width and linear NLC-width by Gurski, Wanke
- page 8 : clique-tree-width upper bounds clique-width by a linear function
- 2000 Upper bounds to the clique width of graphs by Courcelle, Olariu
- page 18 : treewidth upper bounds clique-width by an exponential function – We will prove that for every undirected graph $G$, $cwd(G) \le 2^{twd(G)+1}+1$ …
- 1998 Clique-decomposition, NLC-decomposition and modular decomposition—relationships and results for random graphs by Johansson
- clique-width upper bounds NLC-width by a linear function
- NLC-width upper bounds clique-width by a linear function
- unknown source
- linear clique-width upper bounds clique-width by a computable function
- clique-width upper bounds boolean width by a linear function
- boolean width upper bounds clique-width by an exponential function
- module-width upper bounds clique-width by a computable function
- clique-width upper bounds module-width by a computable function
- modular-width upper bounds clique-width by a computable function
- clique-width upper bounds mim-width by a computable function
- clique-width upper bounds twin-width by a computable function
- https://en.wikipedia.org/wiki/Clique-width
- clique-width – … the minimum number of labels needed to construct G by means of the following 4 operations: 1. Creation of a new vertex… 2. Disjoint union of two labeled graphs… 3. Joining by an edge every vertex labeled $i$ to every vertex labeled $j$, where $i \ne j$ 4. Renaming label $i$ to label $j$
- Comparing Graph Parameters by Schröder
- page 16 : bounded clique cover number does not imply bounded clique-width – Proposition 3.9
- page 23 : bounded genus does not imply bounded clique-width – Proposition 3.17
- page 23 : bounded distance to planar does not imply bounded clique-width – Proposition 3.17
- page 28 : bounded maximum degree does not imply bounded clique-width – Proposition 3.26
- page 28 : bounded distance to bipartite does not imply bounded clique-width – Proposition 3.26
- page 33 : bounded bisection bandwidth does not imply bounded clique-width – Proposition 3.32