chordality
tags: covering edges
equivalent to: chordality
Relations
Other | Relation from | Relation to |
---|---|---|
acyclic chromatic number | upper bound | exclusion |
arboricity | upper bound | exclusion |
average degree | exclusion | exclusion |
average distance | exclusion | exclusion |
bandwidth | upper bound | exclusion |
bipartite | constant | exclusion |
bipartite number | exclusion | unknown to HOPS |
bisection bandwidth | exclusion | exclusion |
block | constant | exclusion |
book thickness | upper bound | exclusion |
boolean width | exclusion | exclusion |
bounded components | upper bound | exclusion |
boxicity | upper bound | exclusion |
branch width | upper bound | exclusion |
c-closure | unknown to HOPS | exclusion |
carving-width | upper bound | exclusion |
chordal | constant | exclusion |
chromatic number | upper bound | exclusion |
clique cover number | exclusion | exclusion |
clique-tree-width | unknown to HOPS | exclusion |
clique-width | exclusion | exclusion |
cluster | constant | exclusion |
co-cluster | constant | exclusion |
cograph | constant | exclusion |
complete | constant | exclusion |
connected | unknown to HOPS | unknown to HOPS |
cutwidth | upper bound | exclusion |
cycle | constant | exclusion |
cycles | constant | exclusion |
d-path-free | upper bound | exclusion |
degeneracy | upper bound | exclusion |
degree treewidth | upper bound | exclusion |
diameter | exclusion | exclusion |
diameter+max degree | upper bound | exclusion |
disjoint cycles | constant | exclusion |
distance to bipartite | upper bound | exclusion |
distance to block | upper bound | exclusion |
distance to bounded components | upper bound | exclusion |
distance to chordal | upper bound | exclusion |
distance to cluster | upper bound | exclusion |
distance to co-cluster | upper bound | exclusion |
distance to cograph | upper bound | exclusion |
distance to complete | upper bound | exclusion |
distance to edgeless | upper bound | exclusion |
distance to forest | upper bound | exclusion |
distance to interval | upper bound | exclusion |
distance to linear forest | upper bound | exclusion |
distance to maximum degree | upper bound | exclusion |
distance to outerplanar | upper bound | exclusion |
distance to perfect | exclusion | exclusion |
distance to planar | unknown to HOPS | exclusion |
distance to stars | upper bound | exclusion |
domatic number | exclusion | exclusion |
domination number | exclusion | exclusion |
edge clique cover number | upper bound | exclusion |
edge connectivity | exclusion | exclusion |
edgeless | constant | exclusion |
feedback edge set | upper bound | exclusion |
feedback vertex set | upper bound | exclusion |
forest | constant | exclusion |
genus | upper bound | exclusion |
girth | exclusion | exclusion |
grid | constant | exclusion |
h-index | upper bound | exclusion |
inf-flip-width | exclusion | exclusion |
interval | constant | exclusion |
iterated type partitions | unknown to HOPS | exclusion |
linear clique-width | unknown to HOPS | exclusion |
linear forest | constant | exclusion |
linear NLC-width | unknown to HOPS | exclusion |
linear rank-width | unknown to HOPS | exclusion |
maximum clique | unknown to HOPS | exclusion |
maximum degree | upper bound | exclusion |
maximum independent set | exclusion | exclusion |
maximum induced matching | exclusion | exclusion |
maximum leaf number | upper bound | exclusion |
maximum matching | unknown to HOPS | exclusion |
maximum matching on bipartite graphs | upper bound | exclusion |
mim-width | exclusion | unknown to HOPS |
minimum degree | exclusion | exclusion |
mm-width | upper bound | exclusion |
modular-width | exclusion | exclusion |
module-width | exclusion | exclusion |
neighborhood diversity | upper bound | exclusion |
NLC-width | exclusion | exclusion |
NLCT-width | unknown to HOPS | exclusion |
odd cycle transversal | upper bound | exclusion |
outerplanar | constant | exclusion |
path | constant | exclusion |
pathwidth | upper bound | exclusion |
pathwidth+maxdegree | upper bound | exclusion |
perfect | unknown to HOPS | exclusion |
planar | constant | exclusion |
radius-r flip-width | exclusion | unknown to HOPS |
rank-width | exclusion | exclusion |
shrub-depth | unknown to HOPS | exclusion |
sim-width | exclusion | unknown to HOPS |
star | constant | exclusion |
stars | constant | exclusion |
topological bandwidth | upper bound | exclusion |
tree | constant | exclusion |
tree-independence number | unknown to HOPS | unknown to HOPS |
treedepth | upper bound | exclusion |
treelength | exclusion | unknown to HOPS |
treewidth | upper bound | exclusion |
twin-cover number | upper bound | exclusion |
twin-width | exclusion | exclusion |
vertex connectivity | unknown to HOPS | exclusion |
vertex cover | upper bound | exclusion |
vertex integrity | upper bound | exclusion |
Results
- 2022 Expanding the Graph Parameter Hierarchy by Tran
- page 16 : chordality – The chordality of a graph $G$ is the minimum amount of chordal graphs required, such that their intersection (ed: fixed typo) results in $G$.
- page 30 : bounded modular-width does not imply bounded chordality – Theorem 4.16. Modular-width is incomparable to Chordality.
- page 30 : bounded chordality does not imply bounded modular-width – Theorem 4.16. Modular-width is incomparable to Chordality.
- 2019 The Graph Parameter Hierarchy by Sorge
- page 9 : boxicity upper bounds chordality by a linear function – Lemma 4.15 ([8,11]). The boxicity $b$ upper-bounds the chordality $c$. We have $c \le b$.
- page 9 : distance to chordal upper bounds chordality by a linear function – (ed: apparently goes as the lemma for ddist to interval and boxicity) Lemma 4.16. The distance $i$ to an interval graph upper bounds the boxicity $b$. We have $b \le i+1$.
- 1993 On the chordality of a graph by McKee, Scheinerman
- page 1 : chordality – The \emph{chordality} of a graph $G=(V,E)$ is defined as the minimum $k$ such that we can write $E=E_1,\cap\dots\cap E_k$ with each $(V,E_i)$ a chordal graph.
- page 2 : chromatic number upper bounds chordality by a linear function – Corollary 4. For any graph $G$, $\mathrm{Chord}(G) \le \chi(G)$, the chromatic number of $G$.
- page 5 : treewidth upper bounds chordality by a linear function – Theorem 7. For any graph $G$, $\mathrm{Chord}(G) \le \tau(G)$.
- unknown source
- distance to cograph upper bounds chordality by a linear function
- Comparing Graph Parameters by Schröder
- page 19 : bounded clique cover number does not imply bounded chordality – Proposition 3.11
- page 19 : bounded distance to perfect does not imply bounded chordality – Proposition 3.11
- page 33 : bounded bisection bandwidth does not imply bounded chordality – Proposition 3.31
- page 36 : bounded average degree does not imply bounded chordality – Proposition 3.36