bandwidth
tags: vertex order
equivalent to: bandwidth
providers: ISGCI
Relations
Other | Relation from | Relation to |
---|---|---|
acyclic chromatic number | exclusion | upper bound |
arboricity | exclusion | upper bound |
average degree | exclusion | upper bound |
average distance | exclusion | exclusion |
bipartite | unbounded | exclusion |
bipartite number | exclusion | unknown to HOPS |
bisection bandwidth | exclusion | upper bound |
block | unbounded | exclusion |
book thickness | exclusion | upper bound |
boolean width | exclusion | upper bound |
bounded components | unknown to HOPS | exclusion |
boxicity | exclusion | upper bound |
branch width | exclusion | upper bound |
c-closure | exclusion | upper bound |
carving-width | unknown to HOPS | upper bound |
chordal | unbounded | exclusion |
chordality | exclusion | upper bound |
chromatic number | exclusion | upper bound |
clique cover number | exclusion | exclusion |
clique-tree-width | exclusion | upper bound |
clique-width | exclusion | upper bound |
cluster | unbounded | exclusion |
co-cluster | unbounded | exclusion |
cograph | unbounded | exclusion |
complete | unbounded | exclusion |
connected | unbounded | unknown to HOPS |
cutwidth | unknown to HOPS | non-tight bounds |
cycle | constant | exclusion |
cycles | unknown to HOPS | exclusion |
d-path-free | exclusion | exclusion |
degeneracy | exclusion | upper bound |
degree treewidth | unknown to HOPS | upper bound |
diameter | exclusion | exclusion |
diameter+max degree | unknown to HOPS | exclusion |
disjoint cycles | unbounded | exclusion |
distance to bipartite | exclusion | exclusion |
distance to block | exclusion | exclusion |
distance to bounded components | exclusion | exclusion |
distance to chordal | exclusion | exclusion |
distance to cluster | exclusion | exclusion |
distance to co-cluster | exclusion | exclusion |
distance to cograph | exclusion | exclusion |
distance to complete | exclusion | exclusion |
distance to edgeless | exclusion | exclusion |
distance to forest | exclusion | exclusion |
distance to interval | exclusion | exclusion |
distance to linear forest | exclusion | exclusion |
distance to maximum degree | exclusion | upper bound |
distance to outerplanar | exclusion | exclusion |
distance to perfect | exclusion | exclusion |
distance to planar | exclusion | exclusion |
distance to stars | exclusion | exclusion |
domatic number | exclusion | upper bound |
domination number | exclusion | exclusion |
edge clique cover number | exclusion | exclusion |
edge connectivity | exclusion | upper bound |
edgeless | unknown to HOPS | exclusion |
feedback edge set | exclusion | exclusion |
feedback vertex set | exclusion | exclusion |
forest | unbounded | exclusion |
genus | exclusion | exclusion |
girth | exclusion | exclusion |
grid | unbounded | exclusion |
h-index | exclusion | upper bound |
inf-flip-width | exclusion | upper bound |
interval | unbounded | exclusion |
iterated type partitions | exclusion | exclusion |
linear clique-width | exclusion | upper bound |
linear forest | unknown to HOPS | exclusion |
linear NLC-width | exclusion | upper bound |
linear rank-width | exclusion | upper bound |
maximum clique | exclusion | upper bound |
maximum degree | exclusion | upper bound |
maximum independent set | exclusion | exclusion |
maximum induced matching | exclusion | exclusion |
maximum leaf number | upper bound | exclusion |
maximum matching | exclusion | exclusion |
maximum matching on bipartite graphs | exclusion | exclusion |
mim-width | exclusion | upper bound |
minimum degree | exclusion | upper bound |
mm-width | exclusion | upper bound |
modular-width | exclusion | exclusion |
module-width | exclusion | upper bound |
neighborhood diversity | exclusion | exclusion |
NLC-width | exclusion | upper bound |
NLCT-width | exclusion | upper bound |
odd cycle transversal | exclusion | exclusion |
outerplanar | unbounded | exclusion |
path | unknown to HOPS | exclusion |
pathwidth | exclusion | upper bound |
pathwidth+maxdegree | unknown to HOPS | upper bound |
perfect | unbounded | exclusion |
planar | unbounded | exclusion |
radius-r flip-width | exclusion | upper bound |
rank-width | exclusion | upper bound |
shrub-depth | exclusion | unknown to HOPS |
sim-width | exclusion | upper bound |
star | unbounded | exclusion |
stars | unbounded | exclusion |
topological bandwidth | unknown to HOPS | upper bound |
tree | unbounded | exclusion |
tree-independence number | exclusion | upper bound |
treedepth | exclusion | exclusion |
treelength | exclusion | unknown to HOPS |
treewidth | exclusion | upper bound |
twin-cover number | exclusion | exclusion |
twin-width | exclusion | upper bound |
vertex connectivity | exclusion | unknown to HOPS |
vertex cover | exclusion | exclusion |
vertex integrity | exclusion | exclusion |
Results
- 2019 The Graph Parameter Hierarchy by Sorge
- page 10 : maximum leaf number upper bounds bandwidth by a linear function – Lemma 4.25. The max leaf number $\mathrm{ml}$ strictly upper bounds the bandwidth $\mathrm{bw}$.
- 1998 A partial $k$-arboretum of graphs with bounded treewidth by Bodlaender
- page 22 : bandwidth – Let $G=(V,E)$ be a graph, and let $f\colon V\to {1,2,\dots,n}$ be a linear ordering of $G$. 1. The \emph{bandwidth} of $f$ is $\max{|f(v)-f(w)| \mid (v,w) \in E}$. … The bandwidth … is the minimum bandwidth … over all possible linear orderings of $G$.
- page 23 : bandwidth upper bounds pathwidth by a linear function – Theorem 44. For every graph $G$, the pathwidth of $G$ is at most the bandwidth of $G$, … Proof. Let $f \colon V\to {1,\dots,n}$ be a linear ordering of $G$ with bandwidth $k$. Then $(X_1,\dots,X_{n-k})$ with $X_i={f^{-1}(i), f^{-1}(i+1), \dots, f^{-1}(i+k)}$ is a path decomposition of $G$ with pathwidth $k$. …
- Comparing Graph Parameters by Schröder
- page 21 : bounded bandwidth does not imply bounded distance to planar – Proposition 3.13
- page 26 : bounded bandwidth does not imply bounded distance to perfect – Proposition 3.24
- page 30 : bounded bandwidth does not imply bounded genus – Proposition 3.27
- assumed
- bandwidth upper bounds topological bandwidth by a linear function – By definition
- https://en.wikipedia.org/wiki/Graph_bandwidth
- bandwidth – (paraphrased) Label graph vertices with distinct integers. Bandwidth of this labelling is the maximum over label differences over all edges. Bandwidth of a graph is the minimum over all labellings.
- unknown source
- bandwidth upper bounds maximum degree by a linear function – Each vertex has an integer $i$ and may be connected only to vertices whose difference from $i$ is at most $k$. There are at most $k$ bigger and $k$ smaller such neighbors.
- bandwidth upper and lower bounds cutwidth by a polynomial function – Any bandwidth bound cutwidth quadratically. An example where this happens is $(P_n)^k$ which has bandwidth $k$ and cutwidth $O(k^2)$; both seem to be optimal.