treedepth
abbr: td
tags: vertex removal
functionally equivalent to: weak inf-coloring number, d-path-free
Definitions:
- Treedepth of a graph is height of an auxiliary rooted forest over graph’s vertices such that all edges of the graph have ancestor-descendant relationship within the tree.
- For a graph treedepth is 1 if the graph is a single vertex. Otherwise, it is the minimum value obtained by removing some vertex and taking maximum over treedepths of each connected component.
Relations
Other | Relation from | Relation to | |
---|---|---|---|
acyclic chromatic number | ■ | exclusion | upper bound |
admissibility | ■ | exclusion | upper bound |
arboricity | ■ | exclusion | upper bound |
average degree | ■ | exclusion | upper bound |
average distance | ■ | exclusion | upper bound |
bandwidth | ■ | unknown to HOPS | exclusion |
bipartite | ■ | unbounded | exclusion |
bipartite number | ■ | exclusion | exclusion |
bisection bandwidth | ■ | exclusion | exclusion |
block | ■ | unbounded | exclusion |
book thickness | ■ | exclusion | upper bound |
boolean width | ■ | exclusion | upper bound |
bounded components | ■ | upper bound | exclusion |
bounded expansion | ■ | exclusion | upper bound |
boxicity | ■ | exclusion | upper bound |
branch width | ■ | exclusion | upper bound |
c-closure | ■ | exclusion | exclusion |
carving-width | ■ | exclusion | exclusion |
chi-bounded | ■ | exclusion | upper bound |
chordal | ■ | unbounded | exclusion |
chordality | ■ | exclusion | upper bound |
chromatic number | ■ | exclusion | upper bound |
clique cover number | ■ | exclusion | exclusion |
clique-tree-width | ■ | exclusion | upper bound |
clique-width | ■ | exclusion | upper bound |
cluster | ■ | unbounded | exclusion |
co-cluster | ■ | unbounded | exclusion |
cograph | ■ | unbounded | exclusion |
complete | ■ | unbounded | exclusion |
connected | ■ | exclusion | avoids |
contraction complexity | ■ | exclusion | exclusion |
cutwidth | ■ | exclusion | exclusion |
cycle | ■ | unknown to HOPS | exclusion |
cycles | ■ | unknown to HOPS | exclusion |
d-admissibility | ■ | exclusion | upper bound |
d-path-free | ■ | upper bound | upper bound |
degeneracy | ■ | exclusion | upper bound |
degree treewidth | ■ | exclusion | exclusion |
diameter | ■ | exclusion | upper bound |
diameter+max degree | ■ | upper bound | exclusion |
distance to bipartite | ■ | exclusion | exclusion |
distance to block | ■ | exclusion | exclusion |
distance to bounded components | ■ | upper bound | exclusion |
distance to chordal | ■ | exclusion | exclusion |
distance to cluster | ■ | exclusion | exclusion |
distance to co-cluster | ■ | exclusion | exclusion |
distance to cograph | ■ | exclusion | exclusion |
distance to complete | ■ | exclusion | exclusion |
distance to edgeless | ■ | upper bound | exclusion |
distance to forest | ■ | exclusion | exclusion |
distance to interval | ■ | exclusion | exclusion |
distance to linear forest | ■ | exclusion | exclusion |
distance to maximum degree | ■ | exclusion | exclusion |
distance to outerplanar | ■ | exclusion | exclusion |
distance to perfect | ■ | exclusion | exclusion |
distance to planar | ■ | exclusion | exclusion |
distance to stars | ■ | upper bound | exclusion |
domatic number | ■ | exclusion | upper bound |
domination number | ■ | exclusion | exclusion |
domino treewidth | ■ | exclusion | exclusion |
edge clique cover number | ■ | exclusion | exclusion |
edge connectivity | ■ | exclusion | upper bound |
edge-cut width | ■ | exclusion | unknown to HOPS |
edge-treewidth | ■ | exclusion | unknown to HOPS |
edgeless | ■ | upper bound | avoids |
excluded minor | ■ | exclusion | unknown to HOPS |
excluded planar minor | ■ | unknown to HOPS | unknown to HOPS |
excluded top-minor | ■ | exclusion | upper bound |
feedback edge set | ■ | exclusion | exclusion |
feedback vertex set | ■ | exclusion | exclusion |
flip-width | ■ | exclusion | upper bound |
forest | ■ | unbounded | exclusion |
genus | ■ | exclusion | exclusion |
grid | ■ | unbounded | exclusion |
h-index | ■ | exclusion | exclusion |
interval | ■ | unbounded | exclusion |
iterated type partitions | ■ | exclusion | unknown to HOPS |
linear clique-width | ■ | exclusion | upper bound |
linear forest | ■ | unbounded | exclusion |
linear NLC-width | ■ | exclusion | upper bound |
linear rank-width | ■ | exclusion | upper bound |
maximum clique | ■ | exclusion | upper bound |
maximum degree | ■ | exclusion | exclusion |
maximum independent set | ■ | exclusion | exclusion |
maximum induced matching | ■ | exclusion | unknown to HOPS |
maximum leaf number | ■ | unknown to HOPS | exclusion |
maximum matching | ■ | upper bound | exclusion |
maximum matching on bipartite graphs | ■ | upper bound | exclusion |
merge-width | ■ | exclusion | upper bound |
mim-width | ■ | exclusion | upper bound |
minimum degree | ■ | exclusion | upper bound |
mm-width | ■ | exclusion | upper bound |
modular-width | ■ | exclusion | unknown to HOPS |
module-width | ■ | exclusion | upper bound |
monadically dependent | ■ | exclusion | upper bound |
monadically stable | ■ | exclusion | upper bound |
neighborhood diversity | ■ | exclusion | exclusion |
NLC-width | ■ | exclusion | upper bound |
NLCT-width | ■ | exclusion | upper bound |
nowhere dense | ■ | exclusion | upper bound |
odd cycle transversal | ■ | exclusion | exclusion |
outerplanar | ■ | unknown to HOPS | exclusion |
overlap treewidth | ■ | exclusion | unknown to HOPS |
path | ■ | unbounded | exclusion |
pathwidth | ■ | exclusion | upper bound |
pathwidth+maxdegree | ■ | exclusion | exclusion |
perfect | ■ | unbounded | exclusion |
planar | ■ | unbounded | exclusion |
radius-inf flip-width | ■ | exclusion | upper bound |
radius-r flip-width | ■ | exclusion | upper bound |
rank-width | ■ | exclusion | upper bound |
series-parallel | ■ | unknown to HOPS | unknown to HOPS |
shrub-depth | ■ | exclusion | upper bound |
sim-width | ■ | exclusion | upper bound |
size | ■ | upper bound | exclusion |
slim tree-cut width | ■ | exclusion | unknown to HOPS |
sparse twin-width | ■ | exclusion | upper bound |
star | ■ | upper bound | exclusion |
stars | ■ | upper bound | exclusion |
strong coloring number | ■ | exclusion | upper bound |
strong d-coloring number | ■ | exclusion | upper bound |
strong inf-coloring number | ■ | exclusion | upper bound |
topological bandwidth | ■ | unknown to HOPS | exclusion |
tree | ■ | unbounded | exclusion |
tree-cut width | ■ | exclusion | unknown to HOPS |
tree-independence number | ■ | exclusion | upper bound |
tree-partition-width | ■ | exclusion | unknown to HOPS |
treebandwidth | ■ | exclusion | unknown to HOPS |
treedepth | ■ | equal | equal |
treelength | ■ | exclusion | upper bound |
treespan | ■ | exclusion | exclusion |
treewidth | ■ | exclusion | upper bound |
twin-cover number | ■ | exclusion | exclusion |
twin-width | ■ | exclusion | upper bound |
vertex connectivity | ■ | unknown to HOPS | unknown to HOPS |
vertex cover | ■ | upper bound | exclusion |
vertex integrity | ■ | upper bound | exclusion |
weak coloring number | ■ | exclusion | upper bound |
weak d-coloring number | ■ | exclusion | upper bound |
weak inf-coloring number | ■ | upper bound | upper bound |
weakly sparse | ■ | exclusion | upper bound |
weakly sparse and merge width | ■ | exclusion | upper bound |
Results
- 2019 The Graph Parameter Hierarchy by Sorge
- 2019 Shrub-depth: Capturing Height of Dense Graphs by Ganian, Hliněný, Nešetřil, Obdržálek, Ossona de Mendez
- treedepth upper bounds shrub-depth by a linear function – Proposition 3.2. If $G$ is of tree-depth $d$, then $G \in \mathcal{TM}_{2^d}(d)$. …
- 2010 Comparing 17 graph parameters by Sasák
- 2008 Grad and classes with bounded expansion II. Algorithmic aspects by Nešetřil, Ossona de Mendez
- d-path-free upper bounds treedepth by a polynomial function
- treedepth upper bounds d-path-free by an exponential function
- assumed
- unknown source
- weak inf-coloring number upper bounds treedepth by a computable function
- treedepth upper bounds weak inf-coloring number by a computable function
- vertex integrity upper bounds treedepth by a linear function – First, treedepth removes vertices of the modulator, then it iterates through remaining components one by one.
- distance to stars upper bounds treedepth by a linear function – First, treedepth removes vertices of the modulator, remainder has treedepth $2$
- graph class path is not constant treedepth
- Comparing Graph Parameters by Schröder
- page 11 : treedepth upper bounds diameter by an exponential function – Proposition 3.1
- page 21 : graph classes with bounded treedepth are not bounded distance to planar – Proposition 3.13
- page 25 : graph classes with bounded treedepth are not bounded h-index – Proposition 3.22
- page 26 : graph classes with bounded treedepth are not bounded distance to perfect – Proposition 3.24