treedepth
abbr: td
tags: vertex removal
equivalent to: d-path-free, treedepth
Relations
Other | Relation from | Relation to |
---|---|---|
acyclic chromatic number | exclusion | upper bound |
arboricity | exclusion | upper bound |
average degree | exclusion | upper bound |
average distance | exclusion | upper bound |
bandwidth | exclusion | exclusion |
bipartite | unbounded | exclusion |
bipartite number | exclusion | upper bound |
bisection bandwidth | exclusion | exclusion |
block | unbounded | exclusion |
book thickness | exclusion | upper bound |
boolean width | exclusion | upper bound |
bounded components | upper bound | exclusion |
boxicity | exclusion | upper bound |
branch width | exclusion | upper bound |
c-closure | exclusion | exclusion |
carving-width | exclusion | exclusion |
chordal | unbounded | exclusion |
chordality | exclusion | upper bound |
chromatic number | exclusion | upper bound |
clique cover number | exclusion | exclusion |
clique-tree-width | exclusion | upper bound |
clique-width | exclusion | upper bound |
cluster | unbounded | exclusion |
co-cluster | unbounded | exclusion |
cograph | unbounded | exclusion |
complete | unbounded | exclusion |
connected | unbounded | unknown to HOPS |
cutwidth | exclusion | exclusion |
cycle | unbounded | exclusion |
cycles | unbounded | exclusion |
d-path-free | upper bound | upper bound |
degeneracy | exclusion | upper bound |
degree treewidth | exclusion | exclusion |
diameter | exclusion | upper bound |
diameter+max degree | upper bound | exclusion |
disjoint cycles | unbounded | exclusion |
distance to bipartite | exclusion | exclusion |
distance to block | exclusion | exclusion |
distance to bounded components | upper bound | exclusion |
distance to chordal | exclusion | exclusion |
distance to cluster | exclusion | exclusion |
distance to co-cluster | exclusion | exclusion |
distance to cograph | exclusion | exclusion |
distance to complete | exclusion | exclusion |
distance to edgeless | upper bound | exclusion |
distance to forest | exclusion | exclusion |
distance to interval | exclusion | exclusion |
distance to linear forest | exclusion | exclusion |
distance to maximum degree | exclusion | exclusion |
distance to outerplanar | exclusion | exclusion |
distance to perfect | exclusion | exclusion |
distance to planar | exclusion | exclusion |
distance to stars | upper bound | exclusion |
domatic number | exclusion | upper bound |
domination number | exclusion | exclusion |
edge clique cover number | exclusion | exclusion |
edge connectivity | exclusion | upper bound |
edgeless | constant | exclusion |
feedback edge set | exclusion | exclusion |
feedback vertex set | exclusion | exclusion |
forest | unbounded | exclusion |
genus | exclusion | exclusion |
girth | exclusion | upper bound |
grid | unbounded | exclusion |
h-index | exclusion | exclusion |
inf-flip-width | exclusion | upper bound |
interval | unbounded | exclusion |
iterated type partitions | exclusion | unknown to HOPS |
linear clique-width | exclusion | upper bound |
linear forest | unbounded | exclusion |
linear NLC-width | exclusion | upper bound |
linear rank-width | exclusion | upper bound |
maximum clique | exclusion | upper bound |
maximum degree | exclusion | exclusion |
maximum independent set | exclusion | exclusion |
maximum induced matching | exclusion | unknown to HOPS |
maximum leaf number | exclusion | exclusion |
maximum matching | unknown to HOPS | unknown to HOPS |
maximum matching on bipartite graphs | upper bound | exclusion |
mim-width | exclusion | upper bound |
minimum degree | exclusion | upper bound |
mm-width | exclusion | upper bound |
modular-width | exclusion | unknown to HOPS |
module-width | exclusion | upper bound |
neighborhood diversity | exclusion | exclusion |
NLC-width | exclusion | upper bound |
NLCT-width | exclusion | upper bound |
odd cycle transversal | exclusion | exclusion |
outerplanar | unbounded | exclusion |
path | unbounded | exclusion |
pathwidth | exclusion | upper bound |
pathwidth+maxdegree | exclusion | exclusion |
perfect | unbounded | exclusion |
planar | unbounded | exclusion |
radius-r flip-width | exclusion | upper bound |
rank-width | exclusion | upper bound |
shrub-depth | exclusion | upper bound |
sim-width | exclusion | upper bound |
star | constant | exclusion |
stars | constant | exclusion |
topological bandwidth | exclusion | exclusion |
tree | unbounded | exclusion |
tree-independence number | exclusion | upper bound |
treelength | exclusion | upper bound |
treewidth | exclusion | upper bound |
twin-cover number | exclusion | exclusion |
twin-width | exclusion | upper bound |
vertex connectivity | unknown to HOPS | unknown to HOPS |
vertex cover | upper bound | exclusion |
vertex integrity | upper bound | exclusion |
Results
- 2019 Shrub-depth: Capturing Height of Dense Graphs by Ganian, Hliněný, Nešetřil, Obdržálek, Mendez
- treedepth upper bounds shrub-depth by a linear function – Proposition 3.2. If $G$ is of tree-depth $d$, then $G \in \mathcal{TM}_{2^d}(d)$. …
- 2019 The Graph Parameter Hierarchy by Sorge
- 2010 Comparing 17 graph parameters by Sasák
- 2008 Grad and classes with bounded expansion II. Algorithmic aspects by Nešetřil, Ossona de Mendez
- d-path-free upper bounds treedepth by a polynomial function
- treedepth upper bounds d-path-free by an exponential function
- https://en.wikipedia.org/wiki/Tree-depth
- treedepth – The tree-depth of a graph $G$ may be defined as the minimum height of a forest $F$ with the property that every edge of $G$ connects a pair of nodes that have an ancestor-descendant relationship to each other in $F$.
- Comparing Graph Parameters by Schröder
- page 11 : treedepth upper bounds diameter by an exponential function – Proposition 3.1
- page 21 : bounded treedepth does not imply bounded distance to planar – Proposition 3.13
- page 25 : bounded treedepth does not imply bounded h-index – Proposition 3.22
- page 26 : bounded treedepth does not imply bounded distance to perfect – Proposition 3.24
- unknown source
- vertex integrity upper bounds treedepth by a linear function – First, treedepth removes vertices of the modulator, then it iterates through remaining components one by one.
- distance to stars upper bounds treedepth by a linear function – First, treedepth removes vertices of the modulator, remainder has treedepth $2$
- graph class path has unbounded treedepth