treewidth
abbr: tw
tags: tree decomposition
equivalent to: branch width, mm-width
Relations
Other | Relation from | Relation to | |
---|---|---|---|
acyclic chromatic number | ■ | exclusion | upper bound |
arboricity | ■ | exclusion | upper bound |
average degree | ■ | exclusion | upper bound |
average distance | ■ | exclusion | exclusion |
bandwidth | ■ | upper bound | exclusion |
bipartite | ■ | unbounded | exclusion |
bipartite number | ■ | exclusion | unknown to HOPS |
bisection bandwidth | ■ | exclusion | exclusion |
block | ■ | unbounded | exclusion |
book thickness | ■ | exclusion | upper bound |
boolean width | ■ | exclusion | upper bound |
bounded components | ■ | upper bound | exclusion |
boxicity | ■ | exclusion | upper bound |
branch width | ■ | upper bound | upper bound |
c-closure | ■ | exclusion | exclusion |
carving-width | ■ | upper bound | exclusion |
chordal | ■ | unbounded | exclusion |
chordality | ■ | exclusion | upper bound |
chromatic number | ■ | exclusion | upper bound |
clique cover number | ■ | exclusion | exclusion |
clique-tree-width | ■ | exclusion | upper bound |
clique-width | ■ | exclusion | upper bound |
cluster | ■ | unbounded | exclusion |
co-cluster | ■ | unbounded | exclusion |
cograph | ■ | unbounded | exclusion |
complete | ■ | unbounded | exclusion |
connected | ■ | unbounded | exclusion |
contraction complexity | ■ | upper bound | exclusion |
cutwidth | ■ | upper bound | exclusion |
cycle | ■ | upper bound | exclusion |
cycles | ■ | upper bound | exclusion |
d-path-free | ■ | upper bound | exclusion |
degeneracy | ■ | exclusion | upper bound |
degree treewidth | ■ | upper bound | exclusion |
diameter | ■ | exclusion | exclusion |
diameter+max degree | ■ | upper bound | exclusion |
disconnected | ■ | unknown to HOPS | unknown to HOPS |
disjoint cycles | ■ | upper bound | exclusion |
distance to bipartite | ■ | exclusion | exclusion |
distance to block | ■ | exclusion | exclusion |
distance to bounded components | ■ | upper bound | exclusion |
distance to chordal | ■ | exclusion | exclusion |
distance to cluster | ■ | exclusion | exclusion |
distance to co-cluster | ■ | exclusion | exclusion |
distance to cograph | ■ | exclusion | exclusion |
distance to complete | ■ | exclusion | exclusion |
distance to disconnected | ■ | exclusion | upper bound |
distance to edgeless | ■ | upper bound | exclusion |
distance to forest | ■ | upper bound | exclusion |
distance to interval | ■ | exclusion | exclusion |
distance to linear forest | ■ | upper bound | exclusion |
distance to maximum degree | ■ | exclusion | exclusion |
distance to outerplanar | ■ | upper bound | exclusion |
distance to perfect | ■ | exclusion | exclusion |
distance to planar | ■ | exclusion | exclusion |
distance to stars | ■ | upper bound | exclusion |
domatic number | ■ | exclusion | upper bound |
domination number | ■ | exclusion | exclusion |
edge clique cover number | ■ | exclusion | exclusion |
edge connectivity | ■ | exclusion | upper bound |
edgeless | ■ | upper bound | exclusion |
feedback edge set | ■ | upper bound | exclusion |
feedback vertex set | ■ | upper bound | exclusion |
forest | ■ | upper bound | exclusion |
genus | ■ | exclusion | exclusion |
girth | ■ | exclusion | exclusion |
grid | ■ | unbounded | exclusion |
h-index | ■ | exclusion | exclusion |
inf-flip-width | ■ | exclusion | upper bound |
interval | ■ | unbounded | exclusion |
iterated type partitions | ■ | exclusion | exclusion |
linear clique-width | ■ | exclusion | unknown to HOPS |
linear forest | ■ | upper bound | exclusion |
linear NLC-width | ■ | exclusion | unknown to HOPS |
linear rank-width | ■ | exclusion | unknown to HOPS |
maximum clique | ■ | exclusion | upper bound |
maximum degree | ■ | exclusion | exclusion |
maximum independent set | ■ | exclusion | exclusion |
maximum induced matching | ■ | exclusion | exclusion |
maximum leaf number | ■ | upper bound | exclusion |
maximum matching | ■ | upper bound | exclusion |
maximum matching on bipartite graphs | ■ | upper bound | exclusion |
mim-width | ■ | exclusion | upper bound |
minimum degree | ■ | exclusion | upper bound |
mm-width | ■ | upper bound | upper bound |
modular-width | ■ | exclusion | exclusion |
module-width | ■ | exclusion | upper bound |
neighborhood diversity | ■ | exclusion | exclusion |
NLC-width | ■ | exclusion | upper bound |
NLCT-width | ■ | exclusion | upper bound |
odd cycle transversal | ■ | exclusion | exclusion |
outerplanar | ■ | upper bound | exclusion |
path | ■ | upper bound | exclusion |
pathwidth | ■ | upper bound | exclusion |
pathwidth+maxdegree | ■ | upper bound | exclusion |
perfect | ■ | unbounded | exclusion |
planar | ■ | unbounded | exclusion |
radius-r flip-width | ■ | exclusion | upper bound |
rank-width | ■ | exclusion | upper bound |
shrub-depth | ■ | exclusion | unknown to HOPS |
sim-width | ■ | exclusion | upper bound |
size | ■ | upper bound | exclusion |
star | ■ | upper bound | exclusion |
stars | ■ | upper bound | exclusion |
topological bandwidth | ■ | upper bound | exclusion |
tree | ■ | upper bound | exclusion |
tree-independence number | ■ | unknown to HOPS | upper bound |
treedepth | ■ | upper bound | exclusion |
treelength | ■ | exclusion | unknown to HOPS |
treewidth | ■ | equal | equal |
twin-cover number | ■ | exclusion | exclusion |
twin-width | ■ | exclusion | upper bound |
vertex connectivity | ■ | exclusion | upper bound |
vertex cover | ■ | upper bound | exclusion |
vertex integrity | ■ | upper bound | exclusion |
Results
- 2015 Parameterized Algorithms by Cygan, Fomin, Kowalik, Lokshtanov, Marx, Pilipczuk, Pilipczuk, Saurabh
- treewidth – Very roughly, treewidth captures how similar a graph is to a tree. There are many ways to define ``tree-likeness’’ of a graph; … it appears that the approach most useful from algorithmic and graph theoretical perspectives, is to view tree-likeness of a graph $G$ as the existence of a structural decomposition of $G$ into pieces of bounded size that are connected in a tree-like fashion. This intuitive concept is formalized via the notions of a tree decomposition and the treewidth of a graph; the latter is a quantitative measure of how good a tree decomposition we can possibly obtain.
- 2012 Twin-Cover: Beyond Vertex Cover in Parameterized Algorithmics by Ganian
- page 263 : bounded twin-cover number does not imply bounded treewidth – There exists graphs with arbitrarily large twin-cover and bounded tree-width and vice-versa.
- page 263 : bounded treewidth does not imply bounded twin-cover number – There exists graphs with arbitrarily large twin-cover and bounded tree-width and vice-versa.
- 2010 Comparing 17 graph parameters by Sasák
- 2008 Simulating Quantum Computation by Contracting Tensor Networks by Markov, Shi
- page 11 : contraction complexity upper bounds treewidth by a linear function – Proposition 4.2. … $cc(G)=tw(G^)$ … Lemma 4.4. $(tw(G) - 1)/2 \le tw(G^) \le \Delta(G)(tw(G) + 1) - 1.$
- 2007 Graph Treewidth and Geometric Thickness Parameters by Dujmovic, Wood
- page 5 : treewidth upper bounds arboricity by a linear function – Proposition 2. The maximum arboricity of a graph in $\mathcal T_k$ (ed: $k$-tree) is $k$; …
- page 8 : treewidth upper bounds book thickness by a computable function – The maximum book thickness … of a graph $\mathcal T_k$ (ed: $k$-tree) satisfy … $=k$ for $k \le 2$, $=k+1$ for $k \ge 3$.
- 2005 On the relationship between NLC-width and linear NLC-width by Gurski, Wanke
- page 8 : treewidth upper bounds NLCT-width by a computable function – The results of [23] imply that each graph class of bounded path-width has bounded linear NLC-width and that each graph class of bounded tree-width has bounded NLCT-width.
- 2000 Upper bounds to the clique width of graphs by Courcelle, Olariu
- page 18 : treewidth upper bounds clique-width by an exponential function – We will prove that for every undirected graph $G$, $cwd(G) \le 2^{twd(G)+1}+1$ …
- 1998 A partial $k$-arboretum of graphs with bounded treewidth by Bodlaender
- page 4 : pathwidth upper bounds treewidth by a linear function – Lemma 3. (a) For all graphs $G$, $pathwidth(G) \ge treewidth(G)$. …
- page 34 : outerplanar upper bounds treewidth by a constant – Lemma 78. Every outerplanar graph $G=(V,E)$ has treewidth at most 2.
- page 37 : graph class grid has unbounded treewidth – Lemma 88. The treewidth of an $n \times n$ grid graph … is at least $n$.
- page 38 : treewidth upper bounds minimum degree by a linear function – Lemma 90 (Scheffler [94]). Every graph of treewidth at most $k$ contains a vertex of degree at most $k$.
- 1994 k-NLC graphs and polynomial algorithms by Wanke
- 1993 On the chordality of a graph by McKee, Scheinerman
- page 5 : treewidth upper bounds chordality by a linear function – Theorem 7. For any graph $G$, $\mathrm{Chord}(G) \le \tau(G)$.
- 1993 The Pathwidth and Treewidth of Cographs by Bodlaender, Möhring
- page 4 : graph class complete has unbounded treewidth – Lemma 3.1 (“clique containment lemma”). Let $({X_i\mid u\in I},T=(I,F))$ be a tree-decomposition of $G=(V,E)$ and let $W \subseteq V$ be a clique in $G$. Then there exists $i \in I$ with $W \subseteq X_i$.
- page 4 : graph class bipartite has unbounded treewidth – Lemma 3.2 (“complete bipartite subgraph containment lemma”).
- 1991 Graph minors. X. Obstructions to tree-decomposition by Robertson, Seymour
- page 16 : treewidth upper bounds branch width by a linear function – (5.1) For any hypergraph $G$, $\max(\beta(G), \gamma(G)) \le \omega(G) + 1 \le \max(\lfloor(3/2)\beta(G)\rfloor, \gamma(G), 1)$.
- page 16 : branch width upper bounds treewidth by a linear function – (5.1) For any hypergraph $G$, $\max(\beta(G), \gamma(G)) \le \omega(G) + 1 \le \max(\lfloor(3/2)\beta(G)\rfloor, \gamma(G), 1)$.
- 1986 Graph minors. II. Algorithmic aspects of tree-width by Robertson, Seymour
- page 1 : treewidth – A \emph{tree-decomposition} of $G$ is a family $(X_i \colon i\in I)$ of subsets of $V(G)$, together with a tree $T$ with $V(T)=I$, with the following properties. (W1) $\bigcup(X_i \colon i \in I)=V(G)$. (W2) Every edge of $G$ has both its ends in some $X_i$ ($i \in I$). (W3) For $i,j,k \in I$, if $j$ lies on the path of $T$ from $i$ to $k$ then $X_i \cap X_k \subseteq X_j$. The \emph{width} of the tree-decomposition is $\max(|X_i|-1 \colon i \in I)$. The tree-width of $G$ is the minimum $w \ge 0$ such that $G$ has a tree-decomposition of width $\le w$.
- page 1 : treewidth – Equivalently, the tree-width of $G$ is the minimum $w \ge 0$ such that $G$ is a subgraph of a ``chordal’’ graph with all cliques of size at most $w + 1$.
- unknown source
- distance to outerplanar upper bounds treewidth by a linear function – After removal of $k$ vertices the remaining class has a bounded width $w$. So by including the removed vertices in every bag, we can achieve decomposition of width $w+k$
- treewidth upper bounds book thickness by a computable function
- treewidth upper bounds mm-width by a computable function
- mm-width upper bounds treewidth by a computable function
- treewidth upper bounds boolean width by a linear function
- treewidth upper bounds tree-independence number by a computable function
- assumed
- degree treewidth upper bounds treewidth by a linear function – by definition
- treewidth is equivalent to treewidth – assumed