bounded expansion
functionally equivalent to: weak coloring number, weakly sparse and merge width, admissibility, strong coloring number
Definition: A graph class $C$ has bounded expansion if for every $r \in \mathbb N$, the family of $r$-shallow minors does not include the family of graphs with unbounded density ($|E(G)|/|V(G)|$).
Relations
Other | Relation from | Relation to | |
---|---|---|---|
acyclic chromatic number | ■ | unknown to HOPS | unknown to HOPS |
admissibility | ■ | upper bound | upper bound |
arboricity | ■ | unknown to HOPS | upper bound |
average degree | ■ | avoids | upper bound |
average distance | ■ | avoids | exclusion |
bandwidth | ■ | upper bound | exclusion |
bipartite | ■ | avoids | exclusion |
bipartite number | ■ | avoids | exclusion |
bisection bandwidth | ■ | avoids | exclusion |
block | ■ | avoids | exclusion |
book thickness | ■ | unknown to HOPS | unknown to HOPS |
boolean width | ■ | avoids | exclusion |
bounded components | ■ | upper bound | exclusion |
bounded expansion | ■ | equal | equal |
boxicity | ■ | avoids | unknown to HOPS |
branch width | ■ | upper bound | exclusion |
c-closure | ■ | avoids | exclusion |
carving-width | ■ | upper bound | exclusion |
chi-bounded | ■ | avoids | unknown to HOPS |
chordal | ■ | avoids | exclusion |
chordality | ■ | avoids | upper bound |
chromatic number | ■ | avoids | upper bound |
clique cover number | ■ | avoids | exclusion |
clique-tree-width | ■ | avoids | exclusion |
clique-width | ■ | avoids | exclusion |
cluster | ■ | avoids | exclusion |
co-cluster | ■ | avoids | exclusion |
cograph | ■ | avoids | exclusion |
complete | ■ | avoids | exclusion |
connected | ■ | avoids | avoids |
contraction complexity | ■ | upper bound | exclusion |
cutwidth | ■ | upper bound | exclusion |
cycle | ■ | upper bound | exclusion |
cycles | ■ | upper bound | exclusion |
d-admissibility | ■ | unknown to HOPS | upper bound |
d-path-free | ■ | upper bound | exclusion |
degeneracy | ■ | unknown to HOPS | upper bound |
degree treewidth | ■ | upper bound | exclusion |
diameter | ■ | avoids | exclusion |
diameter+max degree | ■ | upper bound | exclusion |
distance to bipartite | ■ | avoids | exclusion |
distance to block | ■ | avoids | exclusion |
distance to bounded components | ■ | upper bound | exclusion |
distance to chordal | ■ | avoids | exclusion |
distance to cluster | ■ | avoids | exclusion |
distance to co-cluster | ■ | avoids | exclusion |
distance to cograph | ■ | avoids | exclusion |
distance to complete | ■ | avoids | exclusion |
distance to edgeless | ■ | upper bound | exclusion |
distance to forest | ■ | upper bound | exclusion |
distance to interval | ■ | avoids | exclusion |
distance to linear forest | ■ | upper bound | exclusion |
distance to maximum degree | ■ | unknown to HOPS | exclusion |
distance to outerplanar | ■ | upper bound | exclusion |
distance to perfect | ■ | avoids | exclusion |
distance to planar | ■ | upper bound | exclusion |
distance to stars | ■ | upper bound | exclusion |
domatic number | ■ | avoids | upper bound |
domination number | ■ | avoids | exclusion |
domino treewidth | ■ | upper bound | exclusion |
edge clique cover number | ■ | avoids | exclusion |
edge connectivity | ■ | avoids | upper bound |
edge-cut width | ■ | upper bound | exclusion |
edge-treewidth | ■ | upper bound | exclusion |
edgeless | ■ | upper bound | avoids |
excluded minor | ■ | upper bound | unknown to HOPS |
excluded planar minor | ■ | upper bound | avoids |
excluded top-minor | ■ | upper bound | unknown to HOPS |
feedback edge set | ■ | upper bound | exclusion |
feedback vertex set | ■ | upper bound | exclusion |
flip-width | ■ | avoids | upper bound |
forest | ■ | upper bound | exclusion |
genus | ■ | upper bound | exclusion |
grid | ■ | upper bound | exclusion |
h-index | ■ | unknown to HOPS | exclusion |
interval | ■ | avoids | exclusion |
iterated type partitions | ■ | avoids | exclusion |
linear clique-width | ■ | avoids | exclusion |
linear forest | ■ | upper bound | exclusion |
linear NLC-width | ■ | avoids | exclusion |
linear rank-width | ■ | avoids | exclusion |
maximum clique | ■ | avoids | upper bound |
maximum degree | ■ | upper bound | exclusion |
maximum independent set | ■ | avoids | exclusion |
maximum induced matching | ■ | avoids | exclusion |
maximum leaf number | ■ | upper bound | exclusion |
maximum matching | ■ | upper bound | exclusion |
maximum matching on bipartite graphs | ■ | upper bound | exclusion |
merge-width | ■ | avoids | upper bound |
mim-width | ■ | avoids | unknown to HOPS |
minimum degree | ■ | avoids | upper bound |
mm-width | ■ | upper bound | exclusion |
modular-width | ■ | avoids | exclusion |
module-width | ■ | avoids | exclusion |
monadically dependent | ■ | avoids | upper bound |
monadically stable | ■ | unknown to HOPS | upper bound |
neighborhood diversity | ■ | avoids | exclusion |
NLC-width | ■ | avoids | exclusion |
NLCT-width | ■ | avoids | exclusion |
nowhere dense | ■ | unknown to HOPS | upper bound |
odd cycle transversal | ■ | avoids | exclusion |
outerplanar | ■ | upper bound | exclusion |
overlap treewidth | ■ | upper bound | exclusion |
path | ■ | upper bound | exclusion |
pathwidth | ■ | upper bound | exclusion |
pathwidth+maxdegree | ■ | upper bound | exclusion |
perfect | ■ | avoids | exclusion |
planar | ■ | upper bound | exclusion |
radius-inf flip-width | ■ | avoids | exclusion |
radius-r flip-width | ■ | avoids | unknown to HOPS |
rank-width | ■ | avoids | exclusion |
series-parallel | ■ | unknown to HOPS | unknown to HOPS |
shrub-depth | ■ | avoids | exclusion |
sim-width | ■ | avoids | unknown to HOPS |
size | ■ | upper bound | exclusion |
slim tree-cut width | ■ | upper bound | exclusion |
sparse twin-width | ■ | upper bound | exclusion |
star | ■ | upper bound | exclusion |
stars | ■ | upper bound | exclusion |
strong coloring number | ■ | upper bound | upper bound |
strong d-coloring number | ■ | unknown to HOPS | upper bound |
strong inf-coloring number | ■ | upper bound | exclusion |
topological bandwidth | ■ | upper bound | exclusion |
tree | ■ | upper bound | exclusion |
tree-cut width | ■ | upper bound | exclusion |
tree-independence number | ■ | avoids | unknown to HOPS |
tree-partition-width | ■ | upper bound | exclusion |
treebandwidth | ■ | upper bound | exclusion |
treedepth | ■ | upper bound | exclusion |
treelength | ■ | avoids | unknown to HOPS |
treespan | ■ | upper bound | exclusion |
treewidth | ■ | upper bound | exclusion |
twin-cover number | ■ | avoids | exclusion |
twin-width | ■ | avoids | exclusion |
vertex connectivity | ■ | unknown to HOPS | unknown to HOPS |
vertex cover | ■ | upper bound | exclusion |
vertex integrity | ■ | upper bound | exclusion |
weak coloring number | ■ | upper bound | upper bound |
weak d-coloring number | ■ | unknown to HOPS | upper bound |
weak inf-coloring number | ■ | upper bound | exclusion |
weakly sparse | ■ | unknown to HOPS | upper bound |
weakly sparse and merge width | ■ | upper bound | upper bound |
Results
- 2024 Merge-width and First-Order Model Checking by Dreier, Toruńczyk
- page 7 : bounded expansion upper bounds merge-width by a computable function – Theorem 1.6. Graph classes of bounded expansion have bounded merge-width.
- page 7 : weakly sparse and merge width upper bounds bounded expansion by a computable function – Corollary 1.8. A graph class has bounded expansion if and only if it has bounded merge-width, and is weakly sparse (exclydes some biclique $K_{t,t}$ as a subgraph).
- page 7 : bounded expansion upper bounds weakly sparse and merge width by a computable function – Corollary 1.8. A graph class has bounded expansion if and only if it has bounded merge-width, and is weakly sparse (exclydes some biclique $K_{t,t}$ as a subgraph).
- unknown source
- bounded expansion upper bounds degeneracy by a constant – $wcol_1-1 = col_1-1=adm_1=degeneracy$
- bounded expansion upper bounds weak coloring number by a computable function
- weak coloring number upper bounds bounded expansion by a computable function
- bounded expansion upper bounds strong coloring number by a computable function
- strong coloring number upper bounds bounded expansion by a computable function
- bounded expansion upper bounds admissibility by a computable function
- admissibility upper bounds bounded expansion by a computable function
- bounded expansion upper bounds nowhere dense by a constant – By definition
- excluded top-minor upper bounds bounded expansion by a constant
- sparse twin-width upper bounds bounded expansion by a linear function
- assumed
- sparse twin-width upper bounds bounded expansion by a linear function – by definition
- bounded expansion is equivalent to bounded expansion – assumed