feedback edge set
tags: edge removal
equivalent to: feedback edge set
Relations
Other | Relation from | Relation to |
---|---|---|
acyclic chromatic number | exclusion | upper bound |
arboricity | exclusion | upper bound |
average degree | exclusion | upper bound |
average distance | exclusion | exclusion |
bandwidth | exclusion | exclusion |
bipartite | unbounded | unknown to HOPS |
bipartite number | exclusion | unknown to HOPS |
bisection bandwidth | exclusion | exclusion |
block | unbounded | unknown to HOPS |
book thickness | exclusion | upper bound |
boolean width | exclusion | upper bound |
bounded components | exclusion | exclusion |
boxicity | exclusion | upper bound |
branch width | exclusion | upper bound |
c-closure | exclusion | upper bound |
carving-width | exclusion | exclusion |
chordal | unbounded | unknown to HOPS |
chordality | exclusion | upper bound |
chromatic number | exclusion | upper bound |
clique cover number | exclusion | exclusion |
clique-tree-width | exclusion | upper bound |
clique-width | exclusion | upper bound |
cluster | unbounded | exclusion |
co-cluster | unbounded | exclusion |
cograph | unbounded | exclusion |
complete | unbounded | exclusion |
connected | unbounded | unknown to HOPS |
cutwidth | exclusion | exclusion |
cycle | constant | exclusion |
cycles | unbounded | exclusion |
d-path-free | exclusion | exclusion |
degeneracy | exclusion | upper bound |
degree treewidth | exclusion | exclusion |
diameter | exclusion | exclusion |
diameter+max degree | exclusion | exclusion |
disjoint cycles | unbounded | exclusion |
distance to bipartite | exclusion | upper bound |
distance to block | exclusion | upper bound |
distance to bounded components | exclusion | exclusion |
distance to chordal | exclusion | upper bound |
distance to cluster | exclusion | exclusion |
distance to co-cluster | exclusion | exclusion |
distance to cograph | exclusion | exclusion |
distance to complete | exclusion | exclusion |
distance to edgeless | exclusion | exclusion |
distance to forest | exclusion | upper bound |
distance to interval | exclusion | exclusion |
distance to linear forest | exclusion | exclusion |
distance to maximum degree | exclusion | exclusion |
distance to outerplanar | exclusion | upper bound |
distance to perfect | exclusion | upper bound |
distance to planar | exclusion | upper bound |
distance to stars | exclusion | exclusion |
domatic number | exclusion | upper bound |
domination number | exclusion | exclusion |
edge clique cover number | exclusion | exclusion |
edge connectivity | exclusion | upper bound |
edgeless | constant | exclusion |
feedback vertex set | exclusion | upper bound |
forest | constant | exclusion |
genus | exclusion | upper bound |
girth | exclusion | exclusion |
grid | unbounded | exclusion |
h-index | exclusion | exclusion |
inf-flip-width | exclusion | upper bound |
interval | unbounded | exclusion |
iterated type partitions | exclusion | exclusion |
linear clique-width | exclusion | unknown to HOPS |
linear forest | constant | exclusion |
linear NLC-width | exclusion | unknown to HOPS |
linear rank-width | exclusion | unknown to HOPS |
maximum clique | exclusion | upper bound |
maximum degree | exclusion | exclusion |
maximum independent set | exclusion | exclusion |
maximum induced matching | exclusion | exclusion |
maximum leaf number | upper bound | exclusion |
maximum matching | exclusion | exclusion |
maximum matching on bipartite graphs | unknown to HOPS | exclusion |
mim-width | exclusion | upper bound |
minimum degree | exclusion | upper bound |
mm-width | exclusion | upper bound |
modular-width | exclusion | exclusion |
module-width | exclusion | upper bound |
neighborhood diversity | exclusion | exclusion |
NLC-width | exclusion | upper bound |
NLCT-width | exclusion | upper bound |
odd cycle transversal | exclusion | upper bound |
outerplanar | unbounded | exclusion |
path | constant | exclusion |
pathwidth | exclusion | exclusion |
pathwidth+maxdegree | exclusion | exclusion |
perfect | unbounded | unknown to HOPS |
planar | unbounded | unknown to HOPS |
radius-r flip-width | exclusion | upper bound |
rank-width | exclusion | upper bound |
shrub-depth | exclusion | unknown to HOPS |
sim-width | exclusion | upper bound |
star | constant | exclusion |
stars | constant | exclusion |
topological bandwidth | exclusion | exclusion |
tree | constant | exclusion |
tree-independence number | exclusion | upper bound |
treedepth | exclusion | exclusion |
treelength | exclusion | unknown to HOPS |
treewidth | exclusion | upper bound |
twin-cover number | exclusion | exclusion |
twin-width | exclusion | upper bound |
vertex connectivity | exclusion | unknown to HOPS |
vertex cover | exclusion | exclusion |
vertex integrity | exclusion | exclusion |
Results
- 2022 Expanding the Graph Parameter Hierarchy by Tran
- page 32 : feedback edge set upper bounds c-closure by a linear function – Theorem 5.2. Feedback Edge Number strictly upper bounds $c$-Closure.
- page 32 : bounded c-closure does not imply bounded feedback edge set – Theorem 5.2. Feedback Edge Number strictly upper bounds $c$-Closure.
- 2019 The Graph Parameter Hierarchy by Sorge
- page 10 : feedback edge set upper bounds genus by a linear function – Lemma 4.19. The feedback edge set number $f$ upper bounds the genus $g$. We have $g \le f$.
- unknown source
- feedback edge set upper bounds feedback vertex set by a linear function – Given solution to feedback edge set one can remove one vertex incident to the solution edges to obtain feedback vertex set.
- feedback edge set upper bounds genus by a linear function – Removing $k$ edges creates a forest that is embeddable into the plane. We now add one handle for each of the $k$ edges to get embedding into $k$-handle genus.
- maximum leaf number upper bounds feedback edge set by a computable function
- feedback edge set upper bounds c-closure by a computable function
- graph class forest has constant feedback edge set
- maximum leaf number upper bounds feedback edge set by a polynomial function – M. Bentert (personal communication)
- Comparing Graph Parameters by Schröder
- page 23 : bounded feedback edge set does not imply bounded pathwidth – Proposition 3.16
- page 25 : bounded feedback edge set does not imply bounded distance to interval – Proposition 3.21
- page 25 : bounded feedback edge set does not imply bounded h-index – Proposition 3.22
- page 30 : bounded feedback edge set does not imply bounded bisection bandwidth – Proposition 3.29
- https://stackoverflow.com/questions/10791689/how-to-find-feedback-edge-set-in-undirected-graph
- feedback edge set – Let $G=(V,E)$ be an undirected graph. A set $F \subseteq E$ of edges is called a feedback-edge set if every cycle of $G$ has at least one edge in $F$.