clique cover number
tags: covering vertices
Definition: Clique cover number is the minimum number of parts into which vertices of the graph can be partitioned so that each part induces a clique.
Relations
Other | Relation from | Relation to | |
---|---|---|---|
acyclic chromatic number | ■ | exclusion | exclusion |
arboricity | ■ | exclusion | exclusion |
average degree | ■ | exclusion | exclusion |
average distance | ■ | exclusion | upper bound |
bandwidth | ■ | exclusion | exclusion |
bipartite | ■ | unbounded | exclusion |
bipartite number | ■ | exclusion | upper bound |
bisection bandwidth | ■ | exclusion | exclusion |
block | ■ | unbounded | exclusion |
book thickness | ■ | exclusion | exclusion |
boolean width | ■ | exclusion | exclusion |
bounded components | ■ | exclusion | exclusion |
boxicity | ■ | exclusion | exclusion |
branch width | ■ | exclusion | exclusion |
c-closure | ■ | exclusion | exclusion |
carving-width | ■ | exclusion | exclusion |
chordal | ■ | unbounded | exclusion |
chordality | ■ | exclusion | exclusion |
chromatic number | ■ | exclusion | exclusion |
clique cover number | ■ | equal | equal |
clique-tree-width | ■ | exclusion | exclusion |
clique-width | ■ | exclusion | exclusion |
cluster | ■ | unbounded | exclusion |
co-cluster | ■ | unbounded | exclusion |
cograph | ■ | unbounded | exclusion |
complete | ■ | upper bound | exclusion |
connected | ■ | unbounded | exclusion |
contraction complexity | ■ | exclusion | exclusion |
cutwidth | ■ | exclusion | exclusion |
cycle | ■ | unbounded | exclusion |
cycles | ■ | unbounded | exclusion |
d-path-free | ■ | exclusion | exclusion |
degeneracy | ■ | exclusion | exclusion |
degree treewidth | ■ | exclusion | exclusion |
diameter | ■ | exclusion | upper bound |
diameter+max degree | ■ | exclusion | exclusion |
disconnected | ■ | unknown to HOPS | exclusion |
disjoint cycles | ■ | unbounded | exclusion |
distance to bipartite | ■ | exclusion | exclusion |
distance to block | ■ | exclusion | exclusion |
distance to bounded components | ■ | exclusion | exclusion |
distance to chordal | ■ | exclusion | exclusion |
distance to cluster | ■ | exclusion | exclusion |
distance to co-cluster | ■ | exclusion | exclusion |
distance to cograph | ■ | exclusion | exclusion |
distance to complete | ■ | upper bound | exclusion |
distance to disconnected | ■ | exclusion | exclusion |
distance to edgeless | ■ | exclusion | exclusion |
distance to forest | ■ | exclusion | exclusion |
distance to interval | ■ | exclusion | exclusion |
distance to linear forest | ■ | exclusion | exclusion |
distance to maximum degree | ■ | exclusion | exclusion |
distance to outerplanar | ■ | exclusion | exclusion |
distance to perfect | ■ | exclusion | exclusion |
distance to planar | ■ | exclusion | exclusion |
distance to stars | ■ | exclusion | exclusion |
domatic number | ■ | exclusion | exclusion |
domination number | ■ | exclusion | upper bound |
edge clique cover number | ■ | exclusion | exclusion |
edge connectivity | ■ | exclusion | exclusion |
edgeless | ■ | unbounded | exclusion |
feedback edge set | ■ | exclusion | exclusion |
feedback vertex set | ■ | exclusion | exclusion |
forest | ■ | unbounded | exclusion |
genus | ■ | exclusion | exclusion |
girth | ■ | exclusion | upper bound |
grid | ■ | unbounded | exclusion |
h-index | ■ | exclusion | exclusion |
inf-flip-width | ■ | exclusion | exclusion |
interval | ■ | unbounded | exclusion |
iterated type partitions | ■ | exclusion | exclusion |
linear clique-width | ■ | exclusion | exclusion |
linear forest | ■ | unbounded | exclusion |
linear NLC-width | ■ | exclusion | exclusion |
linear rank-width | ■ | exclusion | exclusion |
maximum clique | ■ | exclusion | exclusion |
maximum degree | ■ | exclusion | exclusion |
maximum independent set | ■ | exclusion | upper bound |
maximum induced matching | ■ | exclusion | upper bound |
maximum leaf number | ■ | exclusion | exclusion |
maximum matching | ■ | exclusion | exclusion |
maximum matching on bipartite graphs | ■ | exclusion | exclusion |
mim-width | ■ | exclusion | unknown to HOPS |
minimum degree | ■ | exclusion | exclusion |
mm-width | ■ | exclusion | exclusion |
modular-width | ■ | exclusion | exclusion |
module-width | ■ | exclusion | exclusion |
neighborhood diversity | ■ | exclusion | exclusion |
NLC-width | ■ | exclusion | exclusion |
NLCT-width | ■ | exclusion | exclusion |
odd cycle transversal | ■ | exclusion | exclusion |
outerplanar | ■ | unbounded | exclusion |
path | ■ | unbounded | exclusion |
pathwidth | ■ | exclusion | exclusion |
pathwidth+maxdegree | ■ | exclusion | exclusion |
perfect | ■ | unbounded | exclusion |
planar | ■ | unbounded | exclusion |
radius-r flip-width | ■ | exclusion | unknown to HOPS |
rank-width | ■ | exclusion | exclusion |
shrub-depth | ■ | exclusion | exclusion |
sim-width | ■ | exclusion | unknown to HOPS |
size | ■ | upper bound | exclusion |
star | ■ | unknown to HOPS | exclusion |
stars | ■ | unbounded | exclusion |
topological bandwidth | ■ | exclusion | exclusion |
tree | ■ | unbounded | exclusion |
tree-independence number | ■ | exclusion | unknown to HOPS |
treedepth | ■ | exclusion | exclusion |
treelength | ■ | exclusion | upper bound |
treewidth | ■ | exclusion | exclusion |
twin-cover number | ■ | exclusion | exclusion |
twin-width | ■ | exclusion | exclusion |
vertex connectivity | ■ | exclusion | exclusion |
vertex cover | ■ | exclusion | exclusion |
vertex integrity | ■ | exclusion | exclusion |
Results
- 2022 Expanding the Graph Parameter Hierarchy by Tran
- page 40 : bounded twin-width does not imply bounded clique cover number – Proposition 6.7. Twin-width is incomparable to Clique Cover Number.
- page 40 : bounded clique cover number does not imply bounded twin-width – Proposition 6.7. Twin-width is incomparable to Clique Cover Number.
- 2019 The Graph Parameter Hierarchy by Sorge
- page 11 : clique cover number upper bounds maximum independent set by a linear function – Lemma 4.26. The minimum clique cover number $c$ strictly upper bounds the independence number $\alpha$.
- unknown source
- distance to complete upper bounds clique cover number by a linear function – We cover the $k$ vertices of the modulator by cliques of size $1$ and cover the remaining clique by another one.
- bounded maximum independent set does not imply bounded clique cover number
- assumed
- clique cover number is equivalent to clique cover number – assumed
- Comparing Graph Parameters by Schröder
- page 15 : bounded clique cover number does not imply bounded distance to perfect – Proposition 3.6
- page 16 : bounded clique cover number does not imply bounded clique-width – Proposition 3.9
- page 19 : bounded clique cover number does not imply bounded chordality – Proposition 3.11