degeneracy
tags: vertex order
functionally equivalent to: arboricity
providers: ISGCI
Definition: Minimum $k$ so that there is a vertex order such that each vertex at most $k$ of its neighbors are in the order before it.
Relations
| Other | Relation from | Relation to | |
|---|---|---|---|
| acyclic chromatic number | ■ | upper bound | exclusion |
| admissibility | ■ | upper bound | unknown to HOPS |
| arboricity | ■ | upper bound | upper bound |
| average degree | ■ | exclusion | upper bound |
| average distance | ■ | exclusion | exclusion |
| bandwidth | ■ | upper bound | exclusion |
| bipartite | ■ | unbounded | exclusion |
| bipartite number | ■ | exclusion | exclusion |
| bisection bandwidth | ■ | exclusion | exclusion |
| block | ■ | unbounded | exclusion |
| book thickness | ■ | upper bound | exclusion |
| boolean width | ■ | exclusion | exclusion |
| bounded components | ■ | upper bound | exclusion |
| bounded expansion | ■ | upper bound | unknown to HOPS |
| boxicity | ■ | exclusion | exclusion |
| branch width | ■ | upper bound | exclusion |
| c-closure | ■ | exclusion | exclusion |
| carving-width | ■ | upper bound | exclusion |
| chi-bounded | ■ | exclusion | unknown to HOPS |
| chordal | ■ | unbounded | exclusion |
| chordality | ■ | exclusion | upper bound |
| chromatic number | ■ | exclusion | upper bound |
| clique cover number | ■ | exclusion | exclusion |
| clique-tree-width | ■ | exclusion | exclusion |
| clique-width | ■ | exclusion | exclusion |
| cluster | ■ | unbounded | exclusion |
| co-cluster | ■ | unbounded | exclusion |
| cograph | ■ | unbounded | exclusion |
| complete | ■ | unbounded | exclusion |
| connected | ■ | exclusion | avoids |
| contraction complexity | ■ | upper bound | exclusion |
| cutwidth | ■ | upper bound | exclusion |
| cycle | ■ | upper bound | exclusion |
| cycles | ■ | upper bound | exclusion |
| d-admissibility | ■ | unknown to HOPS | unknown to HOPS |
| d-path-free | ■ | upper bound | exclusion |
| degeneracy | ■ | equal | equal |
| degree treewidth | ■ | upper bound | exclusion |
| diameter | ■ | exclusion | exclusion |
| diameter+max degree | ■ | upper bound | exclusion |
| distance to bipartite | ■ | exclusion | exclusion |
| distance to block | ■ | exclusion | exclusion |
| distance to bounded components | ■ | upper bound | exclusion |
| distance to chordal | ■ | exclusion | exclusion |
| distance to cluster | ■ | exclusion | exclusion |
| distance to co-cluster | ■ | exclusion | exclusion |
| distance to cograph | ■ | exclusion | exclusion |
| distance to complete | ■ | exclusion | exclusion |
| distance to edgeless | ■ | upper bound | exclusion |
| distance to forest | ■ | upper bound | exclusion |
| distance to interval | ■ | exclusion | exclusion |
| distance to linear forest | ■ | upper bound | exclusion |
| distance to maximum degree | ■ | upper bound | exclusion |
| distance to outerplanar | ■ | upper bound | exclusion |
| distance to perfect | ■ | exclusion | exclusion |
| distance to planar | ■ | upper bound | exclusion |
| distance to stars | ■ | upper bound | exclusion |
| domatic number | ■ | exclusion | upper bound |
| domination number | ■ | exclusion | exclusion |
| domino treewidth | ■ | upper bound | exclusion |
| edge clique cover number | ■ | exclusion | exclusion |
| edge connectivity | ■ | exclusion | upper bound |
| edge-cut width | ■ | upper bound | exclusion |
| edge-treewidth | ■ | upper bound | exclusion |
| edgeless | ■ | upper bound | avoids |
| excluded minor | ■ | upper bound | unknown to HOPS |
| excluded planar minor | ■ | upper bound | avoids |
| excluded top-minor | ■ | upper bound | unknown to HOPS |
| feedback edge set | ■ | upper bound | exclusion |
| feedback vertex set | ■ | upper bound | exclusion |
| flip-width | ■ | exclusion | unknown to HOPS |
| forest | ■ | upper bound | exclusion |
| genus | ■ | upper bound | exclusion |
| grid | ■ | upper bound | exclusion |
| h-index | ■ | upper bound | exclusion |
| interval | ■ | unbounded | exclusion |
| iterated type partitions | ■ | exclusion | exclusion |
| linear clique-width | ■ | exclusion | exclusion |
| linear forest | ■ | upper bound | exclusion |
| linear NLC-width | ■ | exclusion | exclusion |
| linear rank-width | ■ | exclusion | exclusion |
| maximum clique | ■ | exclusion | upper bound |
| maximum degree | ■ | upper bound | exclusion |
| maximum independent set | ■ | exclusion | exclusion |
| maximum induced matching | ■ | exclusion | exclusion |
| maximum leaf number | ■ | upper bound | exclusion |
| maximum matching | ■ | upper bound | exclusion |
| maximum matching on bipartite graphs | ■ | upper bound | exclusion |
| merge-width | ■ | exclusion | unknown to HOPS |
| mim-width | ■ | exclusion | unknown to HOPS |
| minimum degree | ■ | exclusion | upper bound |
| mm-width | ■ | upper bound | exclusion |
| modular-width | ■ | exclusion | exclusion |
| module-width | ■ | exclusion | exclusion |
| monadically dependent | ■ | exclusion | unknown to HOPS |
| monadically stable | ■ | unknown to HOPS | unknown to HOPS |
| neighborhood diversity | ■ | exclusion | exclusion |
| NLC-width | ■ | exclusion | exclusion |
| NLCT-width | ■ | exclusion | exclusion |
| nowhere dense | ■ | unknown to HOPS | unknown to HOPS |
| odd cycle transversal | ■ | exclusion | exclusion |
| outerplanar | ■ | upper bound | exclusion |
| overlap treewidth | ■ | upper bound | exclusion |
| path | ■ | upper bound | exclusion |
| pathwidth | ■ | upper bound | exclusion |
| pathwidth+maxdegree | ■ | upper bound | exclusion |
| perfect | ■ | unbounded | exclusion |
| planar | ■ | upper bound | exclusion |
| radius-inf flip-width | ■ | exclusion | exclusion |
| radius-r flip-width | ■ | exclusion | unknown to HOPS |
| rank-width | ■ | exclusion | exclusion |
| series-parallel | ■ | unknown to HOPS | unknown to HOPS |
| shrub-depth | ■ | exclusion | exclusion |
| sim-width | ■ | exclusion | unknown to HOPS |
| size | ■ | upper bound | exclusion |
| slim tree-cut width | ■ | upper bound | exclusion |
| sparse twin-width | ■ | upper bound | exclusion |
| star | ■ | upper bound | exclusion |
| stars | ■ | upper bound | exclusion |
| strong coloring number | ■ | upper bound | unknown to HOPS |
| strong d-coloring number | ■ | unknown to HOPS | unknown to HOPS |
| strong inf-coloring number | ■ | upper bound | exclusion |
| topological bandwidth | ■ | upper bound | exclusion |
| tree | ■ | upper bound | exclusion |
| tree-cut width | ■ | upper bound | exclusion |
| tree-independence number | ■ | exclusion | unknown to HOPS |
| tree-partition-width | ■ | upper bound | exclusion |
| treebandwidth | ■ | upper bound | exclusion |
| treedepth | ■ | upper bound | exclusion |
| treelength | ■ | exclusion | unknown to HOPS |
| treespan | ■ | upper bound | exclusion |
| treewidth | ■ | upper bound | exclusion |
| twin-cover number | ■ | exclusion | exclusion |
| twin-width | ■ | exclusion | exclusion |
| vertex connectivity | ■ | unknown to HOPS | unknown to HOPS |
| vertex cover | ■ | upper bound | exclusion |
| vertex integrity | ■ | upper bound | exclusion |
| weak coloring number | ■ | upper bound | unknown to HOPS |
| weak d-coloring number | ■ | unknown to HOPS | unknown to HOPS |
| weak inf-coloring number | ■ | upper bound | exclusion |
| weakly sparse | ■ | unknown to HOPS | upper bound |
| weakly sparse and merge width | ■ | upper bound | unknown to HOPS |
Results
- 2022 Expanding the Graph Parameter Hierarchy by Tran
- page 42 : graph classes with bounded degeneracy are not bounded boxicity – Proposition 7.1. Degeneracy is incomparable to Boxicity.
- page 42 : graph classes with bounded boxicity are not bounded degeneracy – Proposition 7.1. Degeneracy is incomparable to Boxicity.
- 2019 The Graph Parameter Hierarchy by Sorge
- page 8 : arboricity upper bounds degeneracy by a linear function – Lemma 4.5
- page 8 : degeneracy upper bounds arboricity by a linear function – Lemma 4.5
- page 9 : acyclic chromatic number upper bounds degeneracy by a polynomial function – Lemma 4.18. The acyclic chromatic number $a$ upper bounds the degeneracy $d$. We have $d \le 2 \binom a2 - 1$
- unknown source
- bounded expansion upper bounds degeneracy by a constant – $wcol_1-1 = col_1-1=adm_1=degeneracy$
- degeneracy upper bounds weakly sparse by a constant
- degeneracy upper bounds chromatic number by a linear function – Greedily color the vertices in order of the degeneracy ordering. As each vertex has at most $k$ colored predecesors we use at most $k+1$ colors.
- degeneracy upper bounds average degree by a linear function – Removing a vertex of degree $d$ increases the value added to the sum of all degrees by at most $2d$, hence, the average is no more than twice the degeneracy.
- assumed
- degeneracy is equivalent to degeneracy – assumed