carving-width
equivalent to: carving-width
providers: ISGCI
Relations
Other | Relation from | Relation to |
---|---|---|
acyclic chromatic number | exclusion | upper bound |
arboricity | exclusion | upper bound |
average degree | exclusion | upper bound |
average distance | exclusion | exclusion |
bandwidth | upper bound | unknown to HOPS |
bipartite | unbounded | exclusion |
bipartite number | exclusion | unknown to HOPS |
bisection bandwidth | exclusion | unknown to HOPS |
block | unbounded | exclusion |
book thickness | exclusion | upper bound |
boolean width | exclusion | upper bound |
bounded components | upper bound | exclusion |
boxicity | exclusion | upper bound |
branch width | exclusion | upper bound |
c-closure | exclusion | upper bound |
chordal | unbounded | exclusion |
chordality | exclusion | upper bound |
chromatic number | exclusion | upper bound |
clique cover number | exclusion | exclusion |
clique-tree-width | exclusion | upper bound |
clique-width | exclusion | upper bound |
cluster | unbounded | exclusion |
co-cluster | unbounded | exclusion |
cograph | unbounded | exclusion |
complete | unbounded | exclusion |
connected | unbounded | unknown to HOPS |
cutwidth | upper bound | unknown to HOPS |
cycle | constant | exclusion |
cycles | constant | exclusion |
d-path-free | exclusion | exclusion |
degeneracy | exclusion | upper bound |
degree treewidth | unknown to HOPS | upper bound |
diameter | exclusion | exclusion |
diameter+max degree | upper bound | exclusion |
disjoint cycles | unbounded | exclusion |
distance to bipartite | exclusion | exclusion |
distance to block | exclusion | exclusion |
distance to bounded components | exclusion | exclusion |
distance to chordal | exclusion | exclusion |
distance to cluster | exclusion | exclusion |
distance to co-cluster | exclusion | exclusion |
distance to cograph | exclusion | exclusion |
distance to complete | exclusion | exclusion |
distance to edgeless | exclusion | exclusion |
distance to forest | exclusion | exclusion |
distance to interval | exclusion | exclusion |
distance to linear forest | exclusion | exclusion |
distance to maximum degree | exclusion | upper bound |
distance to outerplanar | exclusion | exclusion |
distance to perfect | exclusion | exclusion |
distance to planar | exclusion | exclusion |
distance to stars | exclusion | exclusion |
domatic number | exclusion | upper bound |
domination number | exclusion | exclusion |
edge clique cover number | exclusion | exclusion |
edge connectivity | exclusion | upper bound |
edgeless | constant | exclusion |
feedback edge set | exclusion | exclusion |
feedback vertex set | exclusion | exclusion |
forest | unbounded | exclusion |
genus | exclusion | exclusion |
girth | exclusion | exclusion |
grid | unbounded | exclusion |
h-index | exclusion | upper bound |
inf-flip-width | exclusion | upper bound |
interval | unbounded | exclusion |
iterated type partitions | exclusion | exclusion |
linear clique-width | exclusion | unknown to HOPS |
linear forest | constant | exclusion |
linear NLC-width | exclusion | unknown to HOPS |
linear rank-width | exclusion | unknown to HOPS |
maximum clique | exclusion | upper bound |
maximum degree | exclusion | upper bound |
maximum independent set | exclusion | exclusion |
maximum induced matching | exclusion | exclusion |
maximum leaf number | upper bound | exclusion |
maximum matching | exclusion | exclusion |
maximum matching on bipartite graphs | exclusion | exclusion |
mim-width | exclusion | upper bound |
minimum degree | exclusion | upper bound |
mm-width | exclusion | upper bound |
modular-width | exclusion | exclusion |
module-width | exclusion | upper bound |
neighborhood diversity | exclusion | exclusion |
NLC-width | exclusion | upper bound |
NLCT-width | exclusion | upper bound |
odd cycle transversal | exclusion | exclusion |
outerplanar | unbounded | exclusion |
path | constant | exclusion |
pathwidth | exclusion | unknown to HOPS |
pathwidth+maxdegree | upper bound | unknown to HOPS |
perfect | unbounded | exclusion |
planar | unbounded | exclusion |
radius-r flip-width | exclusion | upper bound |
rank-width | exclusion | upper bound |
shrub-depth | exclusion | unknown to HOPS |
sim-width | exclusion | upper bound |
star | unbounded | exclusion |
stars | unbounded | exclusion |
topological bandwidth | unknown to HOPS | unknown to HOPS |
tree | unbounded | exclusion |
tree-independence number | exclusion | upper bound |
treedepth | exclusion | exclusion |
treelength | exclusion | unknown to HOPS |
treewidth | exclusion | upper bound |
twin-cover number | exclusion | exclusion |
twin-width | exclusion | upper bound |
vertex connectivity | exclusion | unknown to HOPS |
vertex cover | exclusion | exclusion |
vertex integrity | exclusion | exclusion |
Results
- 2013 Characterizing graphs of small carving-width by Belmonte, van ’t Hof, Kamiński, Paulusma, Thilikos
- carving-width upper bounds maximum degree by a linear function – Observation 1. Let $G$ be a graph. Then $cw(G) \ge \Delta(G)$.
- 2010 Comparing 17 graph parameters by Sasák
- page 30 : carving-width upper bounds maximum degree by a linear function – Lemma 2.20 Carving-width of a graph $G$ is at least $\Delta(G)$ where $\Delta(G)$ is the maximum degree of a graph $G$.
- page 30 : graph class star has unbounded carving-width – Corollary 2.21 Carving-width of a star is $n-1$.
- page 30 : graph class path has constant carving-width – … path with carving-width 2.
- page 38 : cutwidth upper bounds carving-width by a linear function – Theorem 4.3 (carw $\prec$ cutw) Carving-width is bounded by cut-width.
- page 49 : carving-width upper bounds treewidth by a linear function – Theorem 5.5 (tw $\prec$ carw) Tree-width is bounded by carving-width.
- https://link.springer.com/article/10.1007/bf01215352
- carving-width – Let $V$ be a finite set with $|V| \ge 2$. Two subsets $A,B\subseteq V$ \emph{cross} if $A\cap B$, $A-B$, $B-A$, $V-(A\cup B)$ are all non-empty. A \emph{carving} in $V$ is a set $\mathscr{C}$ of subsets of $V$ such that 1) $\emptyset, V \notin \mathscr{C}$ 2) no two members of $\mathscr{C}$ cross, and 3) $\mathscr{C}$ is maximal subject to (1) and (2). … For $A \subseteq V(G)$, we denote by $\delta(A)$ … the set of all edges with an end in $A$ and an end in $V(G)-A$. For each $e \in E(G)$, let $p(e) \ge 0$ be an integer. For $X \subseteq E(G)$ we denote $\sum_{e \in X}p(e)$ by $p(X)$, and if $|V(G)| \ge 2$ we define the \emph{$p$-carving-width} of $G$ to be the minimum, over all carvings $\mathscr{C}$ in $V(G)$, of the maximum, over all $A \in \mathscr{C}$, of $p(\delta(A))$. … The \emph{carving-width} of $G$ is the $p$-carving-width of $G$ where $p(e)=1$ for every edge $e$.
- https://en.wikipedia.org/wiki/Carving_width
- carving-width – A carving can be described as an unrooted binary tree whose leaves are labeled with the vertices of the given graph. Removing any edge from this tree partitions the tree into two subtrees, and correspondingly partitions the vertices of the tree into two clusters. … The width of a carving, defined in this way, is the maximum number of edges that connect two complementary clusters. The carving width of the graph is the minimum width of any hierarchical clustering.