carving-width
providers: ISGCI
Relations
Other | Relation from | Relation to | |
---|---|---|---|
acyclic chromatic number | ■ | exclusion | upper bound |
arboricity | ■ | exclusion | upper bound |
average degree | ■ | exclusion | upper bound |
average distance | ■ | exclusion | exclusion |
bandwidth | ■ | upper bound | unknown to HOPS |
bipartite | ■ | unbounded | exclusion |
bipartite number | ■ | exclusion | unknown to HOPS |
bisection bandwidth | ■ | exclusion | unknown to HOPS |
block | ■ | unbounded | exclusion |
book thickness | ■ | exclusion | upper bound |
boolean width | ■ | exclusion | upper bound |
bounded components | ■ | upper bound | exclusion |
boxicity | ■ | exclusion | upper bound |
branch width | ■ | exclusion | upper bound |
c-closure | ■ | exclusion | upper bound |
carving-width | ■ | equal | equal |
chordal | ■ | unbounded | exclusion |
chordality | ■ | exclusion | upper bound |
chromatic number | ■ | exclusion | upper bound |
clique cover number | ■ | exclusion | exclusion |
clique-tree-width | ■ | exclusion | upper bound |
clique-width | ■ | exclusion | upper bound |
cluster | ■ | unbounded | exclusion |
co-cluster | ■ | unbounded | exclusion |
cograph | ■ | unbounded | exclusion |
complete | ■ | unbounded | exclusion |
connected | ■ | unbounded | exclusion |
contraction complexity | ■ | unknown to HOPS | upper bound |
cutwidth | ■ | upper bound | unknown to HOPS |
cycle | ■ | upper bound | exclusion |
cycles | ■ | upper bound | exclusion |
d-path-free | ■ | exclusion | exclusion |
degeneracy | ■ | exclusion | upper bound |
degree treewidth | ■ | unknown to HOPS | upper bound |
diameter | ■ | exclusion | exclusion |
diameter+max degree | ■ | upper bound | exclusion |
disconnected | ■ | unknown to HOPS | unknown to HOPS |
disjoint cycles | ■ | unbounded | exclusion |
distance to bipartite | ■ | exclusion | exclusion |
distance to block | ■ | exclusion | exclusion |
distance to bounded components | ■ | exclusion | exclusion |
distance to chordal | ■ | exclusion | exclusion |
distance to cluster | ■ | exclusion | exclusion |
distance to co-cluster | ■ | exclusion | exclusion |
distance to cograph | ■ | exclusion | exclusion |
distance to complete | ■ | exclusion | exclusion |
distance to disconnected | ■ | exclusion | upper bound |
distance to edgeless | ■ | exclusion | exclusion |
distance to forest | ■ | exclusion | exclusion |
distance to interval | ■ | exclusion | exclusion |
distance to linear forest | ■ | exclusion | exclusion |
distance to maximum degree | ■ | exclusion | upper bound |
distance to outerplanar | ■ | exclusion | exclusion |
distance to perfect | ■ | exclusion | exclusion |
distance to planar | ■ | exclusion | exclusion |
distance to stars | ■ | exclusion | exclusion |
domatic number | ■ | exclusion | upper bound |
domination number | ■ | exclusion | exclusion |
edge clique cover number | ■ | exclusion | exclusion |
edge connectivity | ■ | exclusion | upper bound |
edgeless | ■ | upper bound | exclusion |
feedback edge set | ■ | exclusion | exclusion |
feedback vertex set | ■ | exclusion | exclusion |
forest | ■ | unbounded | exclusion |
genus | ■ | exclusion | exclusion |
girth | ■ | exclusion | exclusion |
grid | ■ | unbounded | exclusion |
h-index | ■ | exclusion | upper bound |
inf-flip-width | ■ | exclusion | upper bound |
interval | ■ | unbounded | exclusion |
iterated type partitions | ■ | exclusion | exclusion |
linear clique-width | ■ | exclusion | unknown to HOPS |
linear forest | ■ | upper bound | exclusion |
linear NLC-width | ■ | exclusion | unknown to HOPS |
linear rank-width | ■ | exclusion | unknown to HOPS |
maximum clique | ■ | exclusion | upper bound |
maximum degree | ■ | exclusion | upper bound |
maximum independent set | ■ | exclusion | exclusion |
maximum induced matching | ■ | exclusion | exclusion |
maximum leaf number | ■ | upper bound | exclusion |
maximum matching | ■ | exclusion | exclusion |
maximum matching on bipartite graphs | ■ | exclusion | exclusion |
mim-width | ■ | exclusion | upper bound |
minimum degree | ■ | exclusion | upper bound |
mm-width | ■ | exclusion | upper bound |
modular-width | ■ | exclusion | exclusion |
module-width | ■ | exclusion | upper bound |
neighborhood diversity | ■ | exclusion | exclusion |
NLC-width | ■ | exclusion | upper bound |
NLCT-width | ■ | exclusion | upper bound |
odd cycle transversal | ■ | exclusion | exclusion |
outerplanar | ■ | unbounded | exclusion |
path | ■ | upper bound | exclusion |
pathwidth | ■ | exclusion | unknown to HOPS |
pathwidth+maxdegree | ■ | upper bound | unknown to HOPS |
perfect | ■ | unbounded | exclusion |
planar | ■ | unbounded | exclusion |
radius-r flip-width | ■ | exclusion | upper bound |
rank-width | ■ | exclusion | upper bound |
shrub-depth | ■ | exclusion | unknown to HOPS |
sim-width | ■ | exclusion | upper bound |
size | ■ | upper bound | exclusion |
star | ■ | unbounded | exclusion |
stars | ■ | unbounded | exclusion |
topological bandwidth | ■ | unknown to HOPS | unknown to HOPS |
tree | ■ | unbounded | exclusion |
tree-independence number | ■ | exclusion | upper bound |
treedepth | ■ | exclusion | exclusion |
treelength | ■ | exclusion | unknown to HOPS |
treewidth | ■ | exclusion | upper bound |
twin-cover number | ■ | exclusion | exclusion |
twin-width | ■ | exclusion | upper bound |
vertex connectivity | ■ | exclusion | upper bound |
vertex cover | ■ | exclusion | exclusion |
vertex integrity | ■ | exclusion | exclusion |
Results
- 2013 Characterizing graphs of small carving-width by Belmonte, van ’t Hof, Kamiński, Paulusma, Thilikos
- carving-width upper bounds maximum degree by a linear function – Observation 1. Let $G$ be a graph. Then $cw(G) \ge \Delta(G)$.
- 2010 Comparing 17 graph parameters by Sasák
- page 30 : carving-width upper bounds maximum degree by a linear function – Lemma 2.20 Carving-width of a graph $G$ is at least $\Delta(G)$ where $\Delta(G)$ is the maximum degree of a graph $G$.
- page 30 : graph class star has unbounded carving-width – Corollary 2.21 Carving-width of a star is $n-1$.
- page 30 : path upper bounds carving-width by a constant – … path with carving-width 2.
- page 38 : cutwidth upper bounds carving-width by a linear function – Theorem 4.3 (carw $\prec$ cutw) Carving-width is bounded by cut-width.
- page 49 : carving-width upper bounds treewidth by a linear function – Theorem 5.5 (tw $\prec$ carw) Tree-width is bounded by carving-width.
- assumed
- carving-width is equivalent to carving-width – assumed