boxicity
tags: topology
Relations
| Other | Relation from | Relation to | |
|---|---|---|---|
| acyclic chromatic number | ■ | upper bound | exclusion |
| admissibility | ■ | unknown to HOPS | exclusion |
| arboricity | ■ | exclusion | exclusion |
| average degree | ■ | exclusion | exclusion |
| average distance | ■ | exclusion | exclusion |
| bandwidth | ■ | upper bound | exclusion |
| bipartite | ■ | unknown to HOPS | exclusion |
| bipartite number | ■ | exclusion | exclusion |
| bisection bandwidth | ■ | exclusion | exclusion |
| block | ■ | unknown to HOPS | exclusion |
| book thickness | ■ | upper bound | exclusion |
| boolean width | ■ | exclusion | exclusion |
| bounded components | ■ | upper bound | exclusion |
| bounded expansion | ■ | unknown to HOPS | avoids |
| boxicity | ■ | equal | equal |
| branch width | ■ | upper bound | exclusion |
| c-closure | ■ | exclusion | exclusion |
| carving-width | ■ | upper bound | exclusion |
| chi-bounded | ■ | exclusion | unknown to HOPS |
| chordal | ■ | unknown to HOPS | exclusion |
| chordality | ■ | exclusion | upper bound |
| chromatic number | ■ | exclusion | exclusion |
| clique cover number | ■ | exclusion | exclusion |
| clique-tree-width | ■ | exclusion | exclusion |
| clique-width | ■ | exclusion | exclusion |
| cluster | ■ | upper bound | exclusion |
| co-cluster | ■ | unknown to HOPS | exclusion |
| cograph | ■ | unknown to HOPS | exclusion |
| complete | ■ | upper bound | exclusion |
| connected | ■ | unknown to HOPS | avoids |
| contraction complexity | ■ | upper bound | exclusion |
| cutwidth | ■ | upper bound | exclusion |
| cycle | ■ | upper bound | exclusion |
| cycles | ■ | upper bound | exclusion |
| d-admissibility | ■ | unknown to HOPS | unknown to HOPS |
| d-path-free | ■ | upper bound | exclusion |
| degeneracy | ■ | exclusion | exclusion |
| degree treewidth | ■ | upper bound | exclusion |
| diameter | ■ | exclusion | exclusion |
| diameter+max degree | ■ | upper bound | exclusion |
| distance to bipartite | ■ | exclusion | exclusion |
| distance to block | ■ | unknown to HOPS | exclusion |
| distance to bounded components | ■ | upper bound | exclusion |
| distance to chordal | ■ | exclusion | exclusion |
| distance to cluster | ■ | upper bound | exclusion |
| distance to co-cluster | ■ | exclusion | exclusion |
| distance to cograph | ■ | exclusion | exclusion |
| distance to complete | ■ | upper bound | exclusion |
| distance to edgeless | ■ | upper bound | exclusion |
| distance to forest | ■ | upper bound | exclusion |
| distance to interval | ■ | upper bound | exclusion |
| distance to linear forest | ■ | upper bound | exclusion |
| distance to maximum degree | ■ | upper bound | exclusion |
| distance to outerplanar | ■ | upper bound | exclusion |
| distance to perfect | ■ | exclusion | exclusion |
| distance to planar | ■ | upper bound | exclusion |
| distance to stars | ■ | upper bound | exclusion |
| domatic number | ■ | exclusion | exclusion |
| domination number | ■ | exclusion | exclusion |
| domino treewidth | ■ | upper bound | exclusion |
| edge clique cover number | ■ | upper bound | exclusion |
| edge connectivity | ■ | exclusion | exclusion |
| edge-cut width | ■ | upper bound | exclusion |
| edge-treewidth | ■ | upper bound | exclusion |
| edgeless | ■ | upper bound | avoids |
| excluded minor | ■ | unknown to HOPS | avoids |
| excluded planar minor | ■ | upper bound | avoids |
| excluded top-minor | ■ | unknown to HOPS | avoids |
| feedback edge set | ■ | upper bound | exclusion |
| feedback vertex set | ■ | upper bound | exclusion |
| flip-width | ■ | exclusion | unknown to HOPS |
| forest | ■ | upper bound | exclusion |
| genus | ■ | upper bound | exclusion |
| grid | ■ | upper bound | exclusion |
| h-index | ■ | upper bound | exclusion |
| interval | ■ | upper bound | exclusion |
| iterated type partitions | ■ | unknown to HOPS | exclusion |
| linear clique-width | ■ | exclusion | exclusion |
| linear forest | ■ | upper bound | exclusion |
| linear NLC-width | ■ | exclusion | exclusion |
| linear rank-width | ■ | exclusion | exclusion |
| maximum clique | ■ | exclusion | exclusion |
| maximum degree | ■ | upper bound | exclusion |
| maximum independent set | ■ | exclusion | exclusion |
| maximum induced matching | ■ | exclusion | exclusion |
| maximum leaf number | ■ | upper bound | exclusion |
| maximum matching | ■ | upper bound | exclusion |
| maximum matching on bipartite graphs | ■ | upper bound | exclusion |
| merge-width | ■ | exclusion | unknown to HOPS |
| mim-width | ■ | exclusion | unknown to HOPS |
| minimum degree | ■ | exclusion | exclusion |
| mm-width | ■ | upper bound | exclusion |
| modular-width | ■ | exclusion | exclusion |
| module-width | ■ | exclusion | exclusion |
| monadically dependent | ■ | exclusion | unknown to HOPS |
| monadically stable | ■ | unknown to HOPS | unknown to HOPS |
| neighborhood diversity | ■ | upper bound | exclusion |
| NLC-width | ■ | exclusion | exclusion |
| NLCT-width | ■ | exclusion | exclusion |
| nowhere dense | ■ | unknown to HOPS | unknown to HOPS |
| odd cycle transversal | ■ | exclusion | exclusion |
| outerplanar | ■ | upper bound | exclusion |
| overlap treewidth | ■ | upper bound | exclusion |
| path | ■ | upper bound | exclusion |
| pathwidth | ■ | upper bound | exclusion |
| pathwidth+maxdegree | ■ | upper bound | exclusion |
| perfect | ■ | unknown to HOPS | exclusion |
| planar | ■ | upper bound | exclusion |
| radius-inf flip-width | ■ | exclusion | exclusion |
| radius-r flip-width | ■ | exclusion | unknown to HOPS |
| rank-width | ■ | exclusion | exclusion |
| series-parallel | ■ | unknown to HOPS | unknown to HOPS |
| shrub-depth | ■ | exclusion | exclusion |
| sim-width | ■ | exclusion | unknown to HOPS |
| size | ■ | upper bound | exclusion |
| slim tree-cut width | ■ | upper bound | exclusion |
| sparse twin-width | ■ | unknown to HOPS | exclusion |
| star | ■ | upper bound | exclusion |
| stars | ■ | upper bound | exclusion |
| strong coloring number | ■ | unknown to HOPS | exclusion |
| strong d-coloring number | ■ | unknown to HOPS | unknown to HOPS |
| strong inf-coloring number | ■ | upper bound | exclusion |
| topological bandwidth | ■ | upper bound | exclusion |
| tree | ■ | upper bound | exclusion |
| tree-cut width | ■ | upper bound | exclusion |
| tree-independence number | ■ | exclusion | unknown to HOPS |
| tree-partition-width | ■ | upper bound | exclusion |
| treebandwidth | ■ | upper bound | exclusion |
| treedepth | ■ | upper bound | exclusion |
| treelength | ■ | exclusion | unknown to HOPS |
| treespan | ■ | upper bound | exclusion |
| treewidth | ■ | upper bound | exclusion |
| twin-cover number | ■ | upper bound | exclusion |
| twin-width | ■ | exclusion | exclusion |
| vertex connectivity | ■ | unknown to HOPS | unknown to HOPS |
| vertex cover | ■ | upper bound | exclusion |
| vertex integrity | ■ | upper bound | exclusion |
| weak coloring number | ■ | unknown to HOPS | exclusion |
| weak d-coloring number | ■ | unknown to HOPS | unknown to HOPS |
| weak inf-coloring number | ■ | upper bound | exclusion |
| weakly sparse | ■ | exclusion | unknown to HOPS |
| weakly sparse and merge width | ■ | unknown to HOPS | exclusion |
Results
- 2022 Expanding the Graph Parameter Hierarchy by Tran
- page 16 : boxicity – The boxicity of a graph $G$ is the minimum amount of interval graphs required, such that their intersection (ed: fixed typo) results in $G$.
- page 26 : neighborhood diversity upper bounds boxicity by a polynomial function – Note that given a path of length $n > 3$. The boxicity is 1 while … neighborhood diversity is $n$. … a graph … with neighborhood diversity of $k$, its boxicity is at most $k+k^2$.
- page 26 : graph classes with bounded boxicity are not bounded neighborhood diversity – Note that given a path of length $n > 3$. The boxicity is 1 while … neighborhood diversity is $n$. … a graph … with neighborhood diversity of $k$, its boxicity is at most $k+k^2$.
- page 35 : graph classes with bounded c-closure are not bounded boxicity – Proposition 5.8. $c$-Closure is incomparable to Boxicity.
- page 35 : graph classes with bounded boxicity are not bounded c-closure – Proposition 5.8. $c$-Closure is incomparable to Boxicity.
- page 42 : graph classes with bounded degeneracy are not bounded boxicity – Proposition 7.1. Degeneracy is incomparable to Boxicity.
- page 42 : graph classes with bounded boxicity are not bounded degeneracy – Proposition 7.1. Degeneracy is incomparable to Boxicity.
- 2019 The Graph Parameter Hierarchy by Sorge
- page 8 : acyclic chromatic number upper bounds boxicity by a computable function – Lemma 4.9. The boxicity $b$ is upper bounded by the acyclic chromatic number $\chi_a$ (for every graph with $\chi_a>1$). We have $b \le \chi_a(\chi_a-1)$.
- page 9 : boxicity upper bounds chordality by a linear function – Lemma 4.15 ([8,11]). The boxicity $b$ upper-bounds the chordality $c$. We have $c \le b$.
- page 9 : distance to interval upper bounds boxicity by a linear function – Lemma 4.16. The distance $i$ to an interval graph upper bounds the boxicity $b$. We have $b \le i+1$.
- 2011 Chordal Bipartite Graphs with High Boxicity by Chandran, Francis, Mathew
- page 9 : graph classes with bounded distance to bipartite are not bounded boxicity – Theorem 2 For any $b \in \mathbb N^+$, there exists a chordal bipartite graph $G$ (ed: i.e. bipartite graph with no induced cycle on more than 4 vertices) with $\mathrm{box}(G) > b$.
- Comparing Graph Parameters by Schröder
- page 14 : graph classes with bounded distance to co-cluster are not bounded boxicity – Proposition 3.4
- page 27 : graph classes with bounded distance to chordal are not bounded boxicity – Proposition 3.25
- assumed
- distance to interval upper bounds boxicity by a linear function – By definition
- boxicity is equivalent to boxicity – assumed
- unknown source
- acyclic chromatic number upper bounds boxicity by a computable function