iterated type partitions
tags: module
equivalent to: iterated type partitions
Relations
Other | Relation from | Relation to |
---|---|---|
acyclic chromatic number | exclusion | exclusion |
arboricity | exclusion | exclusion |
average degree | exclusion | exclusion |
average distance | exclusion | upper bound |
bandwidth | exclusion | exclusion |
bipartite | unbounded | exclusion |
bipartite number | exclusion | upper bound |
bisection bandwidth | exclusion | exclusion |
block | unbounded | exclusion |
book thickness | exclusion | exclusion |
boolean width | exclusion | upper bound |
bounded components | unknown to HOPS | exclusion |
boxicity | exclusion | unknown to HOPS |
branch width | exclusion | exclusion |
c-closure | exclusion | exclusion |
carving-width | exclusion | exclusion |
chordal | unbounded | exclusion |
chordality | exclusion | unknown to HOPS |
chromatic number | exclusion | exclusion |
clique cover number | exclusion | exclusion |
clique-tree-width | exclusion | unknown to HOPS |
clique-width | exclusion | upper bound |
cluster | unknown to HOPS | exclusion |
co-cluster | unknown to HOPS | exclusion |
cograph | unknown to HOPS | exclusion |
complete | constant | exclusion |
connected | unbounded | unknown to HOPS |
cutwidth | exclusion | exclusion |
cycle | unbounded | exclusion |
cycles | unbounded | exclusion |
d-path-free | unknown to HOPS | exclusion |
degeneracy | exclusion | exclusion |
degree treewidth | exclusion | exclusion |
diameter | exclusion | upper bound |
diameter+max degree | unknown to HOPS | exclusion |
disjoint cycles | unbounded | exclusion |
distance to bipartite | exclusion | exclusion |
distance to block | exclusion | exclusion |
distance to bounded components | unknown to HOPS | exclusion |
distance to chordal | exclusion | exclusion |
distance to cluster | exclusion | exclusion |
distance to co-cluster | exclusion | exclusion |
distance to cograph | exclusion | exclusion |
distance to complete | upper bound | exclusion |
distance to edgeless | upper bound | exclusion |
distance to forest | exclusion | exclusion |
distance to interval | exclusion | exclusion |
distance to linear forest | exclusion | exclusion |
distance to maximum degree | exclusion | exclusion |
distance to outerplanar | exclusion | exclusion |
distance to perfect | exclusion | exclusion |
distance to planar | exclusion | unknown to HOPS |
distance to stars | unknown to HOPS | exclusion |
domatic number | exclusion | exclusion |
domination number | exclusion | exclusion |
edge clique cover number | upper bound | exclusion |
edge connectivity | exclusion | exclusion |
edgeless | constant | exclusion |
feedback edge set | exclusion | exclusion |
feedback vertex set | exclusion | exclusion |
forest | unbounded | exclusion |
genus | exclusion | exclusion |
girth | exclusion | upper bound |
grid | unbounded | exclusion |
h-index | exclusion | exclusion |
inf-flip-width | exclusion | upper bound |
interval | unbounded | exclusion |
linear clique-width | exclusion | unknown to HOPS |
linear forest | unbounded | exclusion |
linear NLC-width | exclusion | unknown to HOPS |
linear rank-width | exclusion | unknown to HOPS |
maximum clique | exclusion | exclusion |
maximum degree | exclusion | exclusion |
maximum independent set | exclusion | exclusion |
maximum induced matching | exclusion | unknown to HOPS |
maximum leaf number | exclusion | exclusion |
maximum matching | unknown to HOPS | exclusion |
maximum matching on bipartite graphs | upper bound | exclusion |
mim-width | exclusion | upper bound |
minimum degree | exclusion | exclusion |
mm-width | exclusion | exclusion |
modular-width | unknown to HOPS | upper bound |
module-width | exclusion | upper bound |
neighborhood diversity | upper bound | exclusion |
NLC-width | exclusion | upper bound |
NLCT-width | exclusion | unknown to HOPS |
odd cycle transversal | exclusion | exclusion |
outerplanar | unbounded | exclusion |
path | unbounded | exclusion |
pathwidth | exclusion | exclusion |
pathwidth+maxdegree | exclusion | exclusion |
perfect | unbounded | exclusion |
planar | unbounded | exclusion |
radius-r flip-width | exclusion | upper bound |
rank-width | exclusion | upper bound |
shrub-depth | exclusion | unknown to HOPS |
sim-width | exclusion | upper bound |
star | constant | exclusion |
stars | unknown to HOPS | exclusion |
topological bandwidth | exclusion | exclusion |
tree | unbounded | exclusion |
tree-independence number | exclusion | unknown to HOPS |
treedepth | unknown to HOPS | exclusion |
treelength | exclusion | upper bound |
treewidth | exclusion | exclusion |
twin-cover number | unknown to HOPS | exclusion |
twin-width | exclusion | upper bound |
vertex connectivity | unknown to HOPS | exclusion |
vertex cover | upper bound | exclusion |
vertex integrity | unknown to HOPS | exclusion |
Results
- 2024 Parameterized complexity for iterated type partitions and modular-width by Cordasco, Gargano, Rescigno
- page 3 : iterated type partitions – two nodes have the same type iff $N(v) \setminus {u} = N(u) \setminus {v}$ … [ed. paraphrased] let $\mathcal V = {V_1,\dots,V_t}$ be a partition of graph vertices such that each $V_i$ is a clique or an independent set and $t$ is minimized … we can see each element of $\mathcal V$ as a \emph{metavertex} of a new graph $H$, called \emph{type graph} of $G$ … We say that $G$ is a \emph{prime graph} if it matches its type graph … let $H^{(0)}=G$ and $H^{(i)}$ denote the type graph of $H^{(i-1)}$, for $i \ge 1$. Let $d$ be the smallest integer such that $H^{(d)}$ is a \emph{prime graph}. The \emph{iterated type partition} number of $G$, denoted by $\mathrm{itp}(G)$, is the number of nodes of $H^{(d)}$.
- page 3 : neighborhood diversity upper bounds iterated type partitions by a linear function – … $itp(G) \le nd(G)$. Actually $itp(G)$ can be arbitrarily smaller than $nd(G)$.
- page 3 : bounded iterated type partitions does not imply bounded neighborhood diversity – … $itp(G) \le nd(G)$. Actually $itp(G)$ can be arbitrarily smaller than $nd(G)$.
- page 3 : iterated type partitions upper bounds modular-width by a linear function – By definition