iterated type partitions
tags: module
Definition: see Parameterized complexity for iterated type partitions and modular-width by Cordasco, Gargano, Rescigno
Relations
| Other | Relation from | Relation to | |
|---|---|---|---|
| acyclic chromatic number | ■ | exclusion | exclusion |
| admissibility | ■ | exclusion | exclusion |
| arboricity | ■ | exclusion | exclusion |
| average degree | ■ | exclusion | exclusion |
| average distance | ■ | exclusion | upper bound |
| bandwidth | ■ | unknown to HOPS | exclusion |
| bipartite | ■ | unbounded | exclusion |
| bipartite number | ■ | exclusion | exclusion |
| bisection bandwidth | ■ | exclusion | exclusion |
| block | ■ | unbounded | exclusion |
| book thickness | ■ | exclusion | exclusion |
| boolean width | ■ | exclusion | upper bound |
| bounded components | ■ | unknown to HOPS | exclusion |
| bounded expansion | ■ | exclusion | avoids |
| boxicity | ■ | exclusion | unknown to HOPS |
| branch width | ■ | exclusion | exclusion |
| c-closure | ■ | exclusion | exclusion |
| carving-width | ■ | exclusion | exclusion |
| chi-bounded | ■ | exclusion | upper bound |
| chordal | ■ | unbounded | exclusion |
| chordality | ■ | exclusion | unknown to HOPS |
| chromatic number | ■ | exclusion | exclusion |
| clique cover number | ■ | exclusion | exclusion |
| clique-tree-width | ■ | exclusion | unknown to HOPS |
| clique-width | ■ | exclusion | upper bound |
| cluster | ■ | unknown to HOPS | exclusion |
| co-cluster | ■ | unknown to HOPS | exclusion |
| cograph | ■ | unknown to HOPS | exclusion |
| complete | ■ | upper bound | exclusion |
| connected | ■ | exclusion | avoids |
| contraction complexity | ■ | exclusion | exclusion |
| cutwidth | ■ | exclusion | exclusion |
| cycle | ■ | unknown to HOPS | exclusion |
| cycles | ■ | unknown to HOPS | exclusion |
| d-admissibility | ■ | exclusion | unknown to HOPS |
| d-path-free | ■ | unknown to HOPS | exclusion |
| degeneracy | ■ | exclusion | exclusion |
| degree treewidth | ■ | exclusion | exclusion |
| diameter | ■ | exclusion | upper bound |
| diameter+max degree | ■ | unknown to HOPS | exclusion |
| distance to bipartite | ■ | exclusion | exclusion |
| distance to block | ■ | exclusion | exclusion |
| distance to bounded components | ■ | unknown to HOPS | exclusion |
| distance to chordal | ■ | exclusion | exclusion |
| distance to cluster | ■ | exclusion | exclusion |
| distance to co-cluster | ■ | exclusion | exclusion |
| distance to cograph | ■ | exclusion | exclusion |
| distance to complete | ■ | upper bound | exclusion |
| distance to edgeless | ■ | upper bound | exclusion |
| distance to forest | ■ | exclusion | exclusion |
| distance to interval | ■ | exclusion | exclusion |
| distance to linear forest | ■ | exclusion | exclusion |
| distance to maximum degree | ■ | exclusion | exclusion |
| distance to outerplanar | ■ | exclusion | exclusion |
| distance to perfect | ■ | exclusion | exclusion |
| distance to planar | ■ | exclusion | exclusion |
| distance to stars | ■ | unknown to HOPS | exclusion |
| domatic number | ■ | exclusion | exclusion |
| domination number | ■ | exclusion | exclusion |
| domino treewidth | ■ | exclusion | exclusion |
| edge clique cover number | ■ | upper bound | exclusion |
| edge connectivity | ■ | exclusion | exclusion |
| edge-cut width | ■ | exclusion | exclusion |
| edge-treewidth | ■ | exclusion | exclusion |
| edgeless | ■ | upper bound | avoids |
| excluded minor | ■ | exclusion | avoids |
| excluded planar minor | ■ | unknown to HOPS | avoids |
| excluded top-minor | ■ | exclusion | avoids |
| feedback edge set | ■ | exclusion | exclusion |
| feedback vertex set | ■ | exclusion | exclusion |
| flip-width | ■ | exclusion | upper bound |
| forest | ■ | unbounded | exclusion |
| genus | ■ | exclusion | exclusion |
| grid | ■ | unbounded | exclusion |
| h-index | ■ | exclusion | exclusion |
| interval | ■ | unbounded | exclusion |
| iterated type partitions | ■ | equal | equal |
| linear clique-width | ■ | exclusion | unknown to HOPS |
| linear forest | ■ | unbounded | exclusion |
| linear NLC-width | ■ | exclusion | unknown to HOPS |
| linear rank-width | ■ | exclusion | unknown to HOPS |
| maximum clique | ■ | exclusion | exclusion |
| maximum degree | ■ | exclusion | exclusion |
| maximum independent set | ■ | exclusion | exclusion |
| maximum induced matching | ■ | exclusion | unknown to HOPS |
| maximum leaf number | ■ | unknown to HOPS | exclusion |
| maximum matching | ■ | upper bound | exclusion |
| maximum matching on bipartite graphs | ■ | upper bound | exclusion |
| merge-width | ■ | exclusion | upper bound |
| mim-width | ■ | exclusion | upper bound |
| minimum degree | ■ | exclusion | exclusion |
| mm-width | ■ | exclusion | exclusion |
| modular-width | ■ | unknown to HOPS | upper bound |
| module-width | ■ | exclusion | upper bound |
| monadically dependent | ■ | exclusion | upper bound |
| monadically stable | ■ | exclusion | unknown to HOPS |
| neighborhood diversity | ■ | upper bound | exclusion |
| NLC-width | ■ | exclusion | upper bound |
| NLCT-width | ■ | exclusion | unknown to HOPS |
| nowhere dense | ■ | exclusion | unknown to HOPS |
| odd cycle transversal | ■ | exclusion | exclusion |
| outerplanar | ■ | unknown to HOPS | exclusion |
| overlap treewidth | ■ | exclusion | exclusion |
| path | ■ | unbounded | exclusion |
| pathwidth | ■ | exclusion | exclusion |
| pathwidth+maxdegree | ■ | exclusion | exclusion |
| perfect | ■ | unbounded | exclusion |
| planar | ■ | unbounded | exclusion |
| radius-inf flip-width | ■ | exclusion | upper bound |
| radius-r flip-width | ■ | exclusion | upper bound |
| rank-width | ■ | exclusion | upper bound |
| series-parallel | ■ | unknown to HOPS | unknown to HOPS |
| shrub-depth | ■ | exclusion | unknown to HOPS |
| sim-width | ■ | exclusion | upper bound |
| size | ■ | upper bound | exclusion |
| slim tree-cut width | ■ | exclusion | exclusion |
| sparse twin-width | ■ | exclusion | exclusion |
| star | ■ | upper bound | exclusion |
| stars | ■ | unknown to HOPS | exclusion |
| strong coloring number | ■ | exclusion | exclusion |
| strong d-coloring number | ■ | exclusion | unknown to HOPS |
| strong inf-coloring number | ■ | exclusion | exclusion |
| topological bandwidth | ■ | unknown to HOPS | exclusion |
| tree | ■ | unbounded | exclusion |
| tree-cut width | ■ | exclusion | exclusion |
| tree-independence number | ■ | exclusion | unknown to HOPS |
| tree-partition-width | ■ | exclusion | exclusion |
| treebandwidth | ■ | exclusion | exclusion |
| treedepth | ■ | unknown to HOPS | exclusion |
| treelength | ■ | exclusion | upper bound |
| treespan | ■ | exclusion | exclusion |
| treewidth | ■ | exclusion | exclusion |
| twin-cover number | ■ | unknown to HOPS | exclusion |
| twin-width | ■ | exclusion | upper bound |
| vertex connectivity | ■ | unknown to HOPS | unknown to HOPS |
| vertex cover | ■ | upper bound | exclusion |
| vertex integrity | ■ | unknown to HOPS | exclusion |
| weak coloring number | ■ | exclusion | exclusion |
| weak d-coloring number | ■ | exclusion | unknown to HOPS |
| weak inf-coloring number | ■ | unknown to HOPS | exclusion |
| weakly sparse | ■ | exclusion | unknown to HOPS |
| weakly sparse and merge width | ■ | exclusion | exclusion |
Results
- 2024 Parameterized complexity for iterated type partitions and modular-width by Cordasco, Gargano, Rescigno
- page 3 : iterated type partitions – two nodes have the same type iff $N(v) \setminus {u} = N(u) \setminus {v}$ … [ed. paraphrased] let $\mathcal V = {V_1,\dots,V_t}$ be a partition of graph vertices such that each $V_i$ is a clique or an independent set and $t$ is minimized … we can see each element of $\mathcal V$ as a \emph{metavertex} of a new graph $H$, called \emph{type graph} of $G$ … We say that $G$ is a \emph{prime graph} if it matches its type graph … let $H^{(0)}=G$ and $H^{(i)}$ denote the type graph of $H^{(i-1)}$, for $i \ge 1$. Let $d$ be the smallest integer such that $H^{(d)}$ is a \emph{prime graph}. The \emph{iterated type partition} number of $G$, denoted by $\mathrm{itp}(G)$, is the number of nodes of $H^{(d)}$.
- page 3 : neighborhood diversity upper bounds iterated type partitions by a linear function – … $itp(G) \le nd(G)$. Actually $itp(G)$ can be arbitrarily smaller than $nd(G)$.
- page 3 : graph classes with bounded iterated type partitions are not bounded neighborhood diversity – … $itp(G) \le nd(G)$. Actually $itp(G)$ can be arbitrarily smaller than $nd(G)$.
- page 3 : iterated type partitions upper bounds modular-width by a linear function – By definition
- assumed
- iterated type partitions is equivalent to iterated type partitions – assumed