iterated type partitions
tags: module
Relations
Other | Relation from | Relation to | |
---|---|---|---|
acyclic chromatic number | ■ | exclusion | exclusion |
arboricity | ■ | exclusion | exclusion |
average degree | ■ | exclusion | exclusion |
average distance | ■ | exclusion | upper bound |
bandwidth | ■ | exclusion | exclusion |
bipartite | ■ | unbounded | exclusion |
bipartite number | ■ | exclusion | upper bound |
bisection bandwidth | ■ | exclusion | exclusion |
block | ■ | unbounded | exclusion |
book thickness | ■ | exclusion | exclusion |
boolean width | ■ | exclusion | upper bound |
bounded components | ■ | unknown to HOPS | exclusion |
boxicity | ■ | exclusion | unknown to HOPS |
branch width | ■ | exclusion | exclusion |
c-closure | ■ | exclusion | exclusion |
carving-width | ■ | exclusion | exclusion |
chordal | ■ | unbounded | exclusion |
chordality | ■ | exclusion | unknown to HOPS |
chromatic number | ■ | exclusion | exclusion |
clique cover number | ■ | exclusion | exclusion |
clique-tree-width | ■ | exclusion | unknown to HOPS |
clique-width | ■ | exclusion | upper bound |
cluster | ■ | unknown to HOPS | exclusion |
co-cluster | ■ | unknown to HOPS | exclusion |
cograph | ■ | unknown to HOPS | exclusion |
complete | ■ | upper bound | exclusion |
connected | ■ | unbounded | exclusion |
contraction complexity | ■ | exclusion | exclusion |
cutwidth | ■ | exclusion | exclusion |
cycle | ■ | unbounded | exclusion |
cycles | ■ | unbounded | exclusion |
d-path-free | ■ | unknown to HOPS | exclusion |
degeneracy | ■ | exclusion | exclusion |
degree treewidth | ■ | exclusion | exclusion |
diameter | ■ | exclusion | upper bound |
diameter+max degree | ■ | unknown to HOPS | exclusion |
disconnected | ■ | unknown to HOPS | exclusion |
disjoint cycles | ■ | unbounded | exclusion |
distance to bipartite | ■ | exclusion | exclusion |
distance to block | ■ | exclusion | exclusion |
distance to bounded components | ■ | unknown to HOPS | exclusion |
distance to chordal | ■ | exclusion | exclusion |
distance to cluster | ■ | exclusion | exclusion |
distance to co-cluster | ■ | exclusion | exclusion |
distance to cograph | ■ | exclusion | exclusion |
distance to complete | ■ | upper bound | exclusion |
distance to disconnected | ■ | exclusion | exclusion |
distance to edgeless | ■ | upper bound | exclusion |
distance to forest | ■ | exclusion | exclusion |
distance to interval | ■ | exclusion | exclusion |
distance to linear forest | ■ | exclusion | exclusion |
distance to maximum degree | ■ | exclusion | exclusion |
distance to outerplanar | ■ | exclusion | exclusion |
distance to perfect | ■ | exclusion | exclusion |
distance to planar | ■ | exclusion | exclusion |
distance to stars | ■ | unknown to HOPS | exclusion |
domatic number | ■ | exclusion | exclusion |
domination number | ■ | exclusion | exclusion |
edge clique cover number | ■ | upper bound | exclusion |
edge connectivity | ■ | exclusion | exclusion |
edgeless | ■ | upper bound | exclusion |
feedback edge set | ■ | exclusion | exclusion |
feedback vertex set | ■ | exclusion | exclusion |
forest | ■ | unbounded | exclusion |
genus | ■ | exclusion | exclusion |
girth | ■ | exclusion | upper bound |
grid | ■ | unbounded | exclusion |
h-index | ■ | exclusion | exclusion |
inf-flip-width | ■ | exclusion | upper bound |
interval | ■ | unbounded | exclusion |
iterated type partitions | ■ | equal | equal |
linear clique-width | ■ | exclusion | unknown to HOPS |
linear forest | ■ | unbounded | exclusion |
linear NLC-width | ■ | exclusion | unknown to HOPS |
linear rank-width | ■ | exclusion | unknown to HOPS |
maximum clique | ■ | exclusion | exclusion |
maximum degree | ■ | exclusion | exclusion |
maximum independent set | ■ | exclusion | exclusion |
maximum induced matching | ■ | exclusion | unknown to HOPS |
maximum leaf number | ■ | exclusion | exclusion |
maximum matching | ■ | upper bound | exclusion |
maximum matching on bipartite graphs | ■ | upper bound | exclusion |
mim-width | ■ | exclusion | upper bound |
minimum degree | ■ | exclusion | exclusion |
mm-width | ■ | exclusion | exclusion |
modular-width | ■ | unknown to HOPS | upper bound |
module-width | ■ | exclusion | upper bound |
neighborhood diversity | ■ | upper bound | exclusion |
NLC-width | ■ | exclusion | upper bound |
NLCT-width | ■ | exclusion | unknown to HOPS |
odd cycle transversal | ■ | exclusion | exclusion |
outerplanar | ■ | unbounded | exclusion |
path | ■ | unbounded | exclusion |
pathwidth | ■ | exclusion | exclusion |
pathwidth+maxdegree | ■ | exclusion | exclusion |
perfect | ■ | unbounded | exclusion |
planar | ■ | unbounded | exclusion |
radius-r flip-width | ■ | exclusion | upper bound |
rank-width | ■ | exclusion | upper bound |
shrub-depth | ■ | exclusion | unknown to HOPS |
sim-width | ■ | exclusion | upper bound |
size | ■ | upper bound | exclusion |
star | ■ | upper bound | exclusion |
stars | ■ | unknown to HOPS | exclusion |
topological bandwidth | ■ | exclusion | exclusion |
tree | ■ | unbounded | exclusion |
tree-independence number | ■ | exclusion | unknown to HOPS |
treedepth | ■ | unknown to HOPS | exclusion |
treelength | ■ | exclusion | upper bound |
treewidth | ■ | exclusion | exclusion |
twin-cover number | ■ | unknown to HOPS | exclusion |
twin-width | ■ | exclusion | upper bound |
vertex connectivity | ■ | exclusion | exclusion |
vertex cover | ■ | upper bound | exclusion |
vertex integrity | ■ | unknown to HOPS | exclusion |
Results
- 2024 Parameterized complexity for iterated type partitions and modular-width by Cordasco, Gargano, Rescigno
- page 3 : iterated type partitions – two nodes have the same type iff $N(v) \setminus {u} = N(u) \setminus {v}$ … [ed. paraphrased] let $\mathcal V = {V_1,\dots,V_t}$ be a partition of graph vertices such that each $V_i$ is a clique or an independent set and $t$ is minimized … we can see each element of $\mathcal V$ as a \emph{metavertex} of a new graph $H$, called \emph{type graph} of $G$ … We say that $G$ is a \emph{prime graph} if it matches its type graph … let $H^{(0)}=G$ and $H^{(i)}$ denote the type graph of $H^{(i-1)}$, for $i \ge 1$. Let $d$ be the smallest integer such that $H^{(d)}$ is a \emph{prime graph}. The \emph{iterated type partition} number of $G$, denoted by $\mathrm{itp}(G)$, is the number of nodes of $H^{(d)}$.
- page 3 : neighborhood diversity upper bounds iterated type partitions by a linear function – … $itp(G) \le nd(G)$. Actually $itp(G)$ can be arbitrarily smaller than $nd(G)$.
- page 3 : bounded iterated type partitions does not imply bounded neighborhood diversity – … $itp(G) \le nd(G)$. Actually $itp(G)$ can be arbitrarily smaller than $nd(G)$.
- page 3 : iterated type partitions upper bounds modular-width by a linear function – By definition
- assumed
- iterated type partitions is equivalent to iterated type partitions – assumed