branch width
tags: branch decomposition
functionally equivalent to: mm-width, strong inf-coloring number, treewidth
providers: ISGCI
Definition: Minimum over branch decompositions, maximum over decomposition edges, number of vertices that are incident to edges in both parts of the bi-partition.
Relations
| Other | Relation from | Relation to | |
|---|---|---|---|
| acyclic chromatic number | ■ | exclusion | upper bound |
| admissibility | ■ | exclusion | upper bound |
| arboricity | ■ | exclusion | upper bound |
| average degree | ■ | exclusion | upper bound |
| average distance | ■ | exclusion | exclusion |
| bandwidth | ■ | upper bound | exclusion |
| bipartite | ■ | unbounded | exclusion |
| bipartite number | ■ | exclusion | exclusion |
| bisection bandwidth | ■ | exclusion | exclusion |
| block | ■ | unbounded | exclusion |
| book thickness | ■ | exclusion | upper bound |
| boolean width | ■ | exclusion | upper bound |
| bounded components | ■ | upper bound | exclusion |
| bounded expansion | ■ | exclusion | upper bound |
| boxicity | ■ | exclusion | upper bound |
| branch width | ■ | equal | equal |
| c-closure | ■ | exclusion | exclusion |
| carving-width | ■ | upper bound | exclusion |
| chi-bounded | ■ | exclusion | upper bound |
| chordal | ■ | unbounded | exclusion |
| chordality | ■ | exclusion | upper bound |
| chromatic number | ■ | exclusion | upper bound |
| clique cover number | ■ | exclusion | exclusion |
| clique-tree-width | ■ | exclusion | upper bound |
| clique-width | ■ | exclusion | upper bound |
| cluster | ■ | unbounded | exclusion |
| co-cluster | ■ | unbounded | exclusion |
| cograph | ■ | unbounded | exclusion |
| complete | ■ | unbounded | exclusion |
| connected | ■ | exclusion | avoids |
| contraction complexity | ■ | upper bound | exclusion |
| cutwidth | ■ | upper bound | exclusion |
| cycle | ■ | upper bound | exclusion |
| cycles | ■ | upper bound | exclusion |
| d-admissibility | ■ | exclusion | upper bound |
| d-path-free | ■ | upper bound | exclusion |
| degeneracy | ■ | exclusion | upper bound |
| degree treewidth | ■ | upper bound | exclusion |
| diameter | ■ | exclusion | exclusion |
| diameter+max degree | ■ | upper bound | exclusion |
| distance to bipartite | ■ | exclusion | exclusion |
| distance to block | ■ | exclusion | exclusion |
| distance to bounded components | ■ | upper bound | exclusion |
| distance to chordal | ■ | exclusion | exclusion |
| distance to cluster | ■ | exclusion | exclusion |
| distance to co-cluster | ■ | exclusion | exclusion |
| distance to cograph | ■ | exclusion | exclusion |
| distance to complete | ■ | exclusion | exclusion |
| distance to edgeless | ■ | upper bound | exclusion |
| distance to forest | ■ | upper bound | exclusion |
| distance to interval | ■ | exclusion | exclusion |
| distance to linear forest | ■ | upper bound | exclusion |
| distance to maximum degree | ■ | exclusion | exclusion |
| distance to outerplanar | ■ | upper bound | exclusion |
| distance to perfect | ■ | exclusion | exclusion |
| distance to planar | ■ | exclusion | exclusion |
| distance to stars | ■ | upper bound | exclusion |
| domatic number | ■ | exclusion | upper bound |
| domination number | ■ | exclusion | exclusion |
| domino treewidth | ■ | upper bound | exclusion |
| edge clique cover number | ■ | exclusion | exclusion |
| edge connectivity | ■ | exclusion | upper bound |
| edge-cut width | ■ | upper bound | exclusion |
| edge-treewidth | ■ | upper bound | exclusion |
| edgeless | ■ | upper bound | avoids |
| excluded minor | ■ | exclusion | unknown to HOPS |
| excluded planar minor | ■ | upper bound | unknown to HOPS |
| excluded top-minor | ■ | exclusion | upper bound |
| feedback edge set | ■ | upper bound | exclusion |
| feedback vertex set | ■ | upper bound | exclusion |
| flip-width | ■ | exclusion | upper bound |
| forest | ■ | upper bound | exclusion |
| genus | ■ | exclusion | exclusion |
| grid | ■ | unbounded | exclusion |
| h-index | ■ | exclusion | exclusion |
| interval | ■ | unbounded | exclusion |
| iterated type partitions | ■ | exclusion | exclusion |
| linear clique-width | ■ | exclusion | unknown to HOPS |
| linear forest | ■ | upper bound | exclusion |
| linear NLC-width | ■ | exclusion | unknown to HOPS |
| linear rank-width | ■ | exclusion | unknown to HOPS |
| maximum clique | ■ | exclusion | upper bound |
| maximum degree | ■ | exclusion | exclusion |
| maximum independent set | ■ | exclusion | exclusion |
| maximum induced matching | ■ | exclusion | exclusion |
| maximum leaf number | ■ | upper bound | exclusion |
| maximum matching | ■ | upper bound | exclusion |
| maximum matching on bipartite graphs | ■ | upper bound | exclusion |
| merge-width | ■ | exclusion | upper bound |
| mim-width | ■ | exclusion | upper bound |
| minimum degree | ■ | exclusion | upper bound |
| mm-width | ■ | upper bound | upper bound |
| modular-width | ■ | exclusion | exclusion |
| module-width | ■ | exclusion | upper bound |
| monadically dependent | ■ | exclusion | upper bound |
| monadically stable | ■ | exclusion | upper bound |
| neighborhood diversity | ■ | exclusion | exclusion |
| NLC-width | ■ | exclusion | upper bound |
| NLCT-width | ■ | exclusion | upper bound |
| nowhere dense | ■ | exclusion | upper bound |
| odd cycle transversal | ■ | exclusion | exclusion |
| outerplanar | ■ | upper bound | exclusion |
| overlap treewidth | ■ | upper bound | unknown to HOPS |
| path | ■ | upper bound | exclusion |
| pathwidth | ■ | upper bound | exclusion |
| pathwidth+maxdegree | ■ | upper bound | exclusion |
| perfect | ■ | unbounded | exclusion |
| planar | ■ | unbounded | exclusion |
| radius-inf flip-width | ■ | exclusion | upper bound |
| radius-r flip-width | ■ | exclusion | upper bound |
| rank-width | ■ | exclusion | upper bound |
| series-parallel | ■ | unknown to HOPS | unknown to HOPS |
| shrub-depth | ■ | exclusion | unknown to HOPS |
| sim-width | ■ | exclusion | upper bound |
| size | ■ | upper bound | exclusion |
| slim tree-cut width | ■ | upper bound | exclusion |
| sparse twin-width | ■ | exclusion | upper bound |
| star | ■ | upper bound | exclusion |
| stars | ■ | upper bound | exclusion |
| strong coloring number | ■ | exclusion | upper bound |
| strong d-coloring number | ■ | exclusion | upper bound |
| strong inf-coloring number | ■ | upper bound | upper bound |
| topological bandwidth | ■ | upper bound | exclusion |
| tree | ■ | upper bound | exclusion |
| tree-cut width | ■ | upper bound | exclusion |
| tree-independence number | ■ | exclusion | upper bound |
| tree-partition-width | ■ | upper bound | exclusion |
| treebandwidth | ■ | upper bound | unknown to HOPS |
| treedepth | ■ | upper bound | exclusion |
| treelength | ■ | exclusion | unknown to HOPS |
| treespan | ■ | upper bound | exclusion |
| treewidth | ■ | upper bound | upper bound |
| twin-cover number | ■ | exclusion | exclusion |
| twin-width | ■ | exclusion | upper bound |
| vertex connectivity | ■ | unknown to HOPS | unknown to HOPS |
| vertex cover | ■ | upper bound | exclusion |
| vertex integrity | ■ | upper bound | exclusion |
| weak coloring number | ■ | exclusion | upper bound |
| weak d-coloring number | ■ | exclusion | upper bound |
| weak inf-coloring number | ■ | upper bound | exclusion |
| weakly sparse | ■ | exclusion | upper bound |
| weakly sparse and merge width | ■ | exclusion | upper bound |
Results
- 1998 A partial $k$-arboretum of graphs with bounded treewidth by Bodlaender
- page 5 : branch width – A \emph{branch decomposition} of a graph $G=(V,E)$ is a pair $(T=(I,F),\sigma)$, where $T$ is a tree with every node in $T$ of degree one of three, and $\sigma$ is a bijection from $E$ to the set of leaves in $T$. The \emph{order} of an edge $f \in F$ is the number of vertices $v \in V$, for which there exist adjacent edges $(v,w),(v,x) \in E$, such that the path in $T$ from $\sigma(v,w)$ to $\sigma(v,x)$ uses $f$. The \emph{width} of branch decomposition $(T=(I,F),\sigma)$, is the maximum order over all edges $f \in F$. The \emph{branchwidth} of $G$ is the minimum width over all branch decompositions of $G$.
- 1991 Graph minors. X. Obstructions to tree-decomposition by Robertson, Seymour
- page 12 : branch width – A \emph{branch-width} of a hypergraph $G$ is a pair $(T,\tau)$, where $T$ is a ternary tree and $\tau$ is a bijection from the set of leaves of $T$ to $E(G)$. The \emph{order} of an edge $e$ of $T$ is the number of vertices $v$ of $G$ such that there are leaves $t_1,t_2$ of $T$ in different components of $T \setminus e$, with $\tau(t_1),\tau(t_2)$ both incident with $v$. The \emph{width} of $(T,\tau)$ is the maximum order of the edges of $T$, and the \emph{branch-width} $\beta(G)$ of $G$ is the minimum width of all branch-decompositions of $G$ (or 0 if $|E(G)| \le 1$, when $G$ has no branch-decompositions).
- page 16 : treewidth upper bounds branch width by a linear function – (5.1) For any hypergraph $G$, $\max(\beta(G), \gamma(G)) \le \omega(G) + 1 \le \max(\lfloor(3/2)\beta(G)\rfloor, \gamma(G), 1)$.
- page 16 : branch width upper bounds treewidth by a linear function – (5.1) For any hypergraph $G$, $\max(\beta(G), \gamma(G)) \le \omega(G) + 1 \le \max(\lfloor(3/2)\beta(G)\rfloor, \gamma(G), 1)$.
- unknown source
- branch width upper bounds boolean width by a linear function
- branch width upper bounds rank-width by a linear function
- assumed
- branch width is equivalent to branch width – assumed