branch width
equivalent to: treewidth, mm-width
providers: ISGCI
Relations
Other | Relation from | Relation to | |
---|---|---|---|
acyclic chromatic number | ■ | exclusion | upper bound |
arboricity | ■ | exclusion | upper bound |
average degree | ■ | exclusion | upper bound |
average distance | ■ | exclusion | exclusion |
bandwidth | ■ | upper bound | exclusion |
bipartite | ■ | unbounded | exclusion |
bipartite number | ■ | exclusion | unknown to HOPS |
bisection bandwidth | ■ | exclusion | exclusion |
block | ■ | unbounded | exclusion |
book thickness | ■ | exclusion | upper bound |
boolean width | ■ | exclusion | upper bound |
bounded components | ■ | upper bound | exclusion |
boxicity | ■ | exclusion | upper bound |
branch width | ■ | equal | equal |
c-closure | ■ | exclusion | exclusion |
carving-width | ■ | upper bound | exclusion |
chordal | ■ | unbounded | exclusion |
chordality | ■ | exclusion | upper bound |
chromatic number | ■ | exclusion | upper bound |
clique cover number | ■ | exclusion | exclusion |
clique-tree-width | ■ | exclusion | upper bound |
clique-width | ■ | exclusion | upper bound |
cluster | ■ | unbounded | exclusion |
co-cluster | ■ | unbounded | exclusion |
cograph | ■ | unbounded | exclusion |
complete | ■ | unbounded | exclusion |
connected | ■ | unbounded | exclusion |
contraction complexity | ■ | upper bound | exclusion |
cutwidth | ■ | upper bound | exclusion |
cycle | ■ | upper bound | exclusion |
cycles | ■ | upper bound | exclusion |
d-path-free | ■ | upper bound | exclusion |
degeneracy | ■ | exclusion | upper bound |
degree treewidth | ■ | upper bound | exclusion |
diameter | ■ | exclusion | exclusion |
diameter+max degree | ■ | upper bound | exclusion |
disconnected | ■ | unknown to HOPS | unknown to HOPS |
disjoint cycles | ■ | upper bound | exclusion |
distance to bipartite | ■ | exclusion | exclusion |
distance to block | ■ | exclusion | exclusion |
distance to bounded components | ■ | upper bound | exclusion |
distance to chordal | ■ | exclusion | exclusion |
distance to cluster | ■ | exclusion | exclusion |
distance to co-cluster | ■ | exclusion | exclusion |
distance to cograph | ■ | exclusion | exclusion |
distance to complete | ■ | exclusion | exclusion |
distance to disconnected | ■ | exclusion | upper bound |
distance to edgeless | ■ | upper bound | exclusion |
distance to forest | ■ | upper bound | exclusion |
distance to interval | ■ | exclusion | exclusion |
distance to linear forest | ■ | upper bound | exclusion |
distance to maximum degree | ■ | exclusion | exclusion |
distance to outerplanar | ■ | upper bound | exclusion |
distance to perfect | ■ | exclusion | exclusion |
distance to planar | ■ | exclusion | exclusion |
distance to stars | ■ | upper bound | exclusion |
domatic number | ■ | exclusion | upper bound |
domination number | ■ | exclusion | exclusion |
edge clique cover number | ■ | exclusion | exclusion |
edge connectivity | ■ | exclusion | upper bound |
edgeless | ■ | upper bound | exclusion |
feedback edge set | ■ | upper bound | exclusion |
feedback vertex set | ■ | upper bound | exclusion |
forest | ■ | upper bound | exclusion |
genus | ■ | exclusion | exclusion |
girth | ■ | exclusion | exclusion |
grid | ■ | unbounded | exclusion |
h-index | ■ | exclusion | exclusion |
inf-flip-width | ■ | exclusion | upper bound |
interval | ■ | unbounded | exclusion |
iterated type partitions | ■ | exclusion | exclusion |
linear clique-width | ■ | exclusion | unknown to HOPS |
linear forest | ■ | upper bound | exclusion |
linear NLC-width | ■ | exclusion | unknown to HOPS |
linear rank-width | ■ | exclusion | unknown to HOPS |
maximum clique | ■ | exclusion | upper bound |
maximum degree | ■ | exclusion | exclusion |
maximum independent set | ■ | exclusion | exclusion |
maximum induced matching | ■ | exclusion | exclusion |
maximum leaf number | ■ | upper bound | exclusion |
maximum matching | ■ | upper bound | exclusion |
maximum matching on bipartite graphs | ■ | upper bound | exclusion |
mim-width | ■ | exclusion | upper bound |
minimum degree | ■ | exclusion | upper bound |
mm-width | ■ | upper bound | upper bound |
modular-width | ■ | exclusion | exclusion |
module-width | ■ | exclusion | upper bound |
neighborhood diversity | ■ | exclusion | exclusion |
NLC-width | ■ | exclusion | upper bound |
NLCT-width | ■ | exclusion | upper bound |
odd cycle transversal | ■ | exclusion | exclusion |
outerplanar | ■ | upper bound | exclusion |
path | ■ | upper bound | exclusion |
pathwidth | ■ | upper bound | exclusion |
pathwidth+maxdegree | ■ | upper bound | exclusion |
perfect | ■ | unbounded | exclusion |
planar | ■ | unbounded | exclusion |
radius-r flip-width | ■ | exclusion | upper bound |
rank-width | ■ | exclusion | upper bound |
shrub-depth | ■ | exclusion | unknown to HOPS |
sim-width | ■ | exclusion | upper bound |
size | ■ | upper bound | exclusion |
star | ■ | upper bound | exclusion |
stars | ■ | upper bound | exclusion |
topological bandwidth | ■ | upper bound | exclusion |
tree | ■ | upper bound | exclusion |
tree-independence number | ■ | unknown to HOPS | upper bound |
treedepth | ■ | upper bound | exclusion |
treelength | ■ | exclusion | unknown to HOPS |
treewidth | ■ | upper bound | upper bound |
twin-cover number | ■ | exclusion | exclusion |
twin-width | ■ | exclusion | upper bound |
vertex connectivity | ■ | exclusion | upper bound |
vertex cover | ■ | upper bound | exclusion |
vertex integrity | ■ | upper bound | exclusion |
Results
- 1998 A partial $k$-arboretum of graphs with bounded treewidth by Bodlaender
- page 5 : branch width – A \emph{branch decomposition} of a graph $G=(V,E)$ is a pair $(T=(I,F),\sigma)$, where $T$ is a tree with every node in $T$ of degree one of three, and $\sigma$ is a bijection from $E$ to the set of leaves in $T$. The \emph{order} of an edge $f \in F$ is the number of vertices $v \in V$, for which there exist adjacent edges $(v,w),(v,x) \in E$, such that the path in $T$ from $\sigma(v,w)$ to $\sigma(v,x)$ uses $f$. The \emph{width} of branch decomposition $(T=(I,F),\sigma)$, is the maximum order over all edges $f \in F$. The \emph{branchwidth} of $G$ is the minimum width over all branch decompositions of $G$.
- 1991 Graph minors. X. Obstructions to tree-decomposition by Robertson, Seymour
- page 12 : branch width – A \emph{branch-width} of a hypergraph $G$ is a pair $(T,\tau)$, where $T$ is a ternary tree and $\tau$ is a bijection from the set of leaves of $T$ to $E(G)$. The \emph{order} of an edge $e$ of $T$ is the number of vertices $v$ of $G$ such that there are leaves $t_1,t_2$ of $T$ in different components of $T \setminus e$, with $\tau(t_1),\tau(t_2)$ both incident with $v$. The \emph{width} of $(T,\tau)$ is the maximum order of the edges of $T$, and the \emph{branch-width} $\beta(G)$ of $G$ is the minimum width of all branch-decompositions of $G$ (or 0 if $|E(G)| \le 1$, when $G$ has no branch-decompositions).
- page 16 : treewidth upper bounds branch width by a linear function – (5.1) For any hypergraph $G$, $\max(\beta(G), \gamma(G)) \le \omega(G) + 1 \le \max(\lfloor(3/2)\beta(G)\rfloor, \gamma(G), 1)$.
- page 16 : branch width upper bounds treewidth by a linear function – (5.1) For any hypergraph $G$, $\max(\beta(G), \gamma(G)) \le \omega(G) + 1 \le \max(\lfloor(3/2)\beta(G)\rfloor, \gamma(G), 1)$.
- assumed
- branch width is equivalent to branch width – assumed
- unknown source
- branch width upper bounds boolean width by a linear function
- branch width upper bounds rank-width by a linear function