branch width
equivalent to: mm-width, branch width, treewidth
providers: ISGCI
Relations
Other | Relation from | Relation to |
---|---|---|
acyclic chromatic number | exclusion | upper bound |
arboricity | exclusion | upper bound |
average degree | exclusion | upper bound |
average distance | exclusion | exclusion |
bandwidth | upper bound | exclusion |
bipartite | unbounded | exclusion |
bipartite number | exclusion | unknown to HOPS |
bisection bandwidth | exclusion | exclusion |
block | unbounded | exclusion |
book thickness | exclusion | upper bound |
boolean width | exclusion | upper bound |
bounded components | upper bound | exclusion |
boxicity | exclusion | upper bound |
c-closure | exclusion | exclusion |
carving-width | upper bound | exclusion |
chordal | unbounded | exclusion |
chordality | exclusion | upper bound |
chromatic number | exclusion | upper bound |
clique cover number | exclusion | exclusion |
clique-tree-width | exclusion | upper bound |
clique-width | exclusion | upper bound |
cluster | unbounded | exclusion |
co-cluster | unbounded | exclusion |
cograph | unbounded | exclusion |
complete | unbounded | exclusion |
connected | unbounded | unknown to HOPS |
cutwidth | upper bound | exclusion |
cycle | constant | exclusion |
cycles | constant | exclusion |
d-path-free | upper bound | exclusion |
degeneracy | exclusion | upper bound |
degree treewidth | upper bound | exclusion |
diameter | exclusion | exclusion |
diameter+max degree | upper bound | exclusion |
disjoint cycles | constant | exclusion |
distance to bipartite | exclusion | exclusion |
distance to block | exclusion | exclusion |
distance to bounded components | upper bound | exclusion |
distance to chordal | exclusion | exclusion |
distance to cluster | exclusion | exclusion |
distance to co-cluster | exclusion | exclusion |
distance to cograph | exclusion | exclusion |
distance to complete | exclusion | exclusion |
distance to edgeless | upper bound | exclusion |
distance to forest | upper bound | exclusion |
distance to interval | exclusion | exclusion |
distance to linear forest | upper bound | exclusion |
distance to maximum degree | exclusion | exclusion |
distance to outerplanar | upper bound | exclusion |
distance to perfect | exclusion | exclusion |
distance to planar | exclusion | exclusion |
distance to stars | upper bound | exclusion |
domatic number | exclusion | upper bound |
domination number | exclusion | exclusion |
edge clique cover number | exclusion | exclusion |
edge connectivity | exclusion | upper bound |
edgeless | constant | exclusion |
feedback edge set | upper bound | exclusion |
feedback vertex set | upper bound | exclusion |
forest | constant | exclusion |
genus | exclusion | exclusion |
girth | exclusion | exclusion |
grid | unbounded | exclusion |
h-index | exclusion | exclusion |
inf-flip-width | exclusion | upper bound |
interval | unbounded | exclusion |
iterated type partitions | exclusion | exclusion |
linear clique-width | exclusion | unknown to HOPS |
linear forest | constant | exclusion |
linear NLC-width | exclusion | unknown to HOPS |
linear rank-width | exclusion | unknown to HOPS |
maximum clique | exclusion | upper bound |
maximum degree | exclusion | exclusion |
maximum independent set | exclusion | exclusion |
maximum induced matching | exclusion | exclusion |
maximum leaf number | upper bound | exclusion |
maximum matching | unknown to HOPS | exclusion |
maximum matching on bipartite graphs | upper bound | exclusion |
mim-width | exclusion | upper bound |
minimum degree | exclusion | upper bound |
mm-width | upper bound | upper bound |
modular-width | exclusion | exclusion |
module-width | exclusion | upper bound |
neighborhood diversity | exclusion | exclusion |
NLC-width | exclusion | upper bound |
NLCT-width | exclusion | upper bound |
odd cycle transversal | exclusion | exclusion |
outerplanar | constant | exclusion |
path | constant | exclusion |
pathwidth | upper bound | exclusion |
pathwidth+maxdegree | upper bound | exclusion |
perfect | unbounded | exclusion |
planar | unbounded | exclusion |
radius-r flip-width | exclusion | upper bound |
rank-width | exclusion | upper bound |
shrub-depth | exclusion | unknown to HOPS |
sim-width | exclusion | upper bound |
star | constant | exclusion |
stars | constant | exclusion |
topological bandwidth | upper bound | exclusion |
tree | constant | exclusion |
tree-independence number | unknown to HOPS | upper bound |
treedepth | upper bound | exclusion |
treelength | exclusion | unknown to HOPS |
treewidth | upper bound | upper bound |
twin-cover number | exclusion | exclusion |
twin-width | exclusion | upper bound |
vertex connectivity | unknown to HOPS | unknown to HOPS |
vertex cover | upper bound | exclusion |
vertex integrity | upper bound | exclusion |
Results
- 1998 A partial $k$-arboretum of graphs with bounded treewidth by Bodlaender
- page 5 : branch width – A \emph{branch decomposition} of a graph $G=(V,E)$ is a pair $(T=(I,F),\sigma)$, where $T$ is a tree with every node in $T$ of degree one of three, and $\sigma$ is a bijection from $E$ to the set of leaves in $T$. The \emph{order} of an edge $f \in F$ is the number of vertices $v \in V$, for which there exist adjacent edges $(v,w),(v,x) \in E$, such that the path in $T$ from $\sigma(v,w)$ to $\sigma(v,x)$ uses $f$. The \emph{width} of branch decomposition $(T=(I,F),\sigma)$, is the maximum order over all edges $f \in F$. The \emph{branchwidth} of $G$ is the minimum width over all branch decompositions of $G$.
- 1991 Graph minors. X. Obstructions to tree-decomposition by Robertson, Seymour
- page 12 : branch width – A \emph{branch-width} of a hypergraph $G$ is a pair $(T,\tau)$, where $T$ is a ternary tree and $\tau$ is a bijection from the set of leaves of $T$ to $E(G)$. The \emph{order} of an edge $e$ of $T$ is the number of vertices $v$ of $G$ such that there are leaves $t_1,t_2$ of $T$ in different components of $T \setminus e$, with $\tau(t_1),\tau(t_2)$ both incident with $v$. The \emph{width} of $(T,\tau)$ is the maximum order of the edges of $T$, and the \emph{branch-width} $\beta(G)$ of $G$ is the minimum width of all branch-decompositions of $G$ (or 0 if $|E(G)| \le 1$, when $G$ has no branch-decompositions).
- page 16 : treewidth upper bounds branch width by a linear function – (5.1) For any hypergraph $G$, $\max(\beta(G), \gamma(G)) \le \omega(G) + 1 \le \max(\lfloor(3/2)\beta(G)\rfloor, \gamma(G), 1)$.
- page 16 : branch width upper bounds treewidth by a linear function – (5.1) For any hypergraph $G$, $\max(\beta(G), \gamma(G)) \le \omega(G) + 1 \le \max(\lfloor(3/2)\beta(G)\rfloor, \gamma(G), 1)$.
- unknown source
- branch width upper bounds boolean width by a linear function
- branch width upper bounds rank-width by a linear function
- https://en.wikipedia.org/wiki/Branch-decomposition
- branch width – … branch-decomposition of an undirected graph $G$ is a hierarchical clustering of the edges of $G$, represented by an unrooted binary tree $T$ with the edges of $G$ as its leaves. Removing any edge from $T$ partitions the edges of $G$ into two subgraphs, and the width of the decomposition is the maximum number of shared vertices of any pair of subgraphs formed in this way. The branchwidth of $G$ is the minimum width of any branch-decomposition of $G$.