boolean width
functionally equivalent to: clique-width, rank-width, module-width, NLC-width, radius-inf flip-width
providers: ISGCI
Relations
| Other | Relation from | Relation to | |
|---|---|---|---|
| acyclic chromatic number | ■ | exclusion | exclusion |
| admissibility | ■ | exclusion | exclusion |
| arboricity | ■ | exclusion | exclusion |
| average degree | ■ | exclusion | exclusion |
| average distance | ■ | exclusion | exclusion |
| bandwidth | ■ | upper bound | exclusion |
| bipartite | ■ | unbounded | exclusion |
| bipartite number | ■ | exclusion | exclusion |
| bisection bandwidth | ■ | exclusion | exclusion |
| block | ■ | unknown to HOPS | exclusion |
| book thickness | ■ | exclusion | exclusion |
| boolean width | ■ | equal | equal |
| bounded components | ■ | upper bound | exclusion |
| bounded expansion | ■ | exclusion | avoids |
| boxicity | ■ | exclusion | exclusion |
| branch width | ■ | upper bound | exclusion |
| c-closure | ■ | exclusion | exclusion |
| carving-width | ■ | upper bound | exclusion |
| chi-bounded | ■ | exclusion | upper bound |
| chordal | ■ | unknown to HOPS | exclusion |
| chordality | ■ | exclusion | exclusion |
| chromatic number | ■ | exclusion | exclusion |
| clique cover number | ■ | exclusion | exclusion |
| clique-tree-width | ■ | upper bound | unknown to HOPS |
| clique-width | ■ | upper bound | upper bound |
| cluster | ■ | upper bound | exclusion |
| co-cluster | ■ | upper bound | exclusion |
| cograph | ■ | upper bound | exclusion |
| complete | ■ | upper bound | exclusion |
| connected | ■ | exclusion | avoids |
| contraction complexity | ■ | upper bound | exclusion |
| cutwidth | ■ | upper bound | exclusion |
| cycle | ■ | upper bound | exclusion |
| cycles | ■ | upper bound | exclusion |
| d-admissibility | ■ | exclusion | unknown to HOPS |
| d-path-free | ■ | upper bound | exclusion |
| degeneracy | ■ | exclusion | exclusion |
| degree treewidth | ■ | upper bound | exclusion |
| diameter | ■ | exclusion | exclusion |
| diameter+max degree | ■ | upper bound | exclusion |
| distance to bipartite | ■ | exclusion | exclusion |
| distance to block | ■ | unknown to HOPS | exclusion |
| distance to bounded components | ■ | upper bound | exclusion |
| distance to chordal | ■ | exclusion | exclusion |
| distance to cluster | ■ | upper bound | exclusion |
| distance to co-cluster | ■ | upper bound | exclusion |
| distance to cograph | ■ | upper bound | exclusion |
| distance to complete | ■ | upper bound | exclusion |
| distance to edgeless | ■ | upper bound | exclusion |
| distance to forest | ■ | upper bound | exclusion |
| distance to interval | ■ | exclusion | exclusion |
| distance to linear forest | ■ | upper bound | exclusion |
| distance to maximum degree | ■ | exclusion | exclusion |
| distance to outerplanar | ■ | upper bound | exclusion |
| distance to perfect | ■ | exclusion | exclusion |
| distance to planar | ■ | exclusion | exclusion |
| distance to stars | ■ | upper bound | exclusion |
| domatic number | ■ | exclusion | exclusion |
| domination number | ■ | exclusion | exclusion |
| domino treewidth | ■ | upper bound | exclusion |
| edge clique cover number | ■ | upper bound | exclusion |
| edge connectivity | ■ | exclusion | exclusion |
| edge-cut width | ■ | upper bound | exclusion |
| edge-treewidth | ■ | upper bound | exclusion |
| edgeless | ■ | upper bound | avoids |
| excluded minor | ■ | exclusion | avoids |
| excluded planar minor | ■ | upper bound | avoids |
| excluded top-minor | ■ | exclusion | avoids |
| feedback edge set | ■ | upper bound | exclusion |
| feedback vertex set | ■ | upper bound | exclusion |
| flip-width | ■ | exclusion | upper bound |
| forest | ■ | upper bound | exclusion |
| genus | ■ | exclusion | exclusion |
| grid | ■ | unbounded | exclusion |
| h-index | ■ | exclusion | exclusion |
| interval | ■ | unknown to HOPS | exclusion |
| iterated type partitions | ■ | upper bound | exclusion |
| linear clique-width | ■ | upper bound | unknown to HOPS |
| linear forest | ■ | upper bound | exclusion |
| linear NLC-width | ■ | upper bound | unknown to HOPS |
| linear rank-width | ■ | upper bound | unknown to HOPS |
| maximum clique | ■ | exclusion | exclusion |
| maximum degree | ■ | exclusion | exclusion |
| maximum independent set | ■ | exclusion | exclusion |
| maximum induced matching | ■ | exclusion | exclusion |
| maximum leaf number | ■ | upper bound | exclusion |
| maximum matching | ■ | upper bound | exclusion |
| maximum matching on bipartite graphs | ■ | upper bound | exclusion |
| merge-width | ■ | exclusion | upper bound |
| mim-width | ■ | unknown to HOPS | upper bound |
| minimum degree | ■ | exclusion | exclusion |
| mm-width | ■ | upper bound | exclusion |
| modular-width | ■ | upper bound | exclusion |
| module-width | ■ | upper bound | upper bound |
| monadically dependent | ■ | exclusion | upper bound |
| monadically stable | ■ | exclusion | unknown to HOPS |
| neighborhood diversity | ■ | upper bound | exclusion |
| NLC-width | ■ | upper bound | upper bound |
| NLCT-width | ■ | upper bound | unknown to HOPS |
| nowhere dense | ■ | exclusion | unknown to HOPS |
| odd cycle transversal | ■ | exclusion | exclusion |
| outerplanar | ■ | upper bound | exclusion |
| overlap treewidth | ■ | upper bound | exclusion |
| path | ■ | upper bound | exclusion |
| pathwidth | ■ | upper bound | exclusion |
| pathwidth+maxdegree | ■ | upper bound | exclusion |
| perfect | ■ | unbounded | exclusion |
| planar | ■ | unbounded | exclusion |
| radius-inf flip-width | ■ | upper bound | upper bound |
| radius-r flip-width | ■ | exclusion | upper bound |
| rank-width | ■ | upper bound | upper bound |
| series-parallel | ■ | unknown to HOPS | unknown to HOPS |
| shrub-depth | ■ | upper bound | exclusion |
| sim-width | ■ | exclusion | upper bound |
| size | ■ | upper bound | exclusion |
| slim tree-cut width | ■ | upper bound | exclusion |
| sparse twin-width | ■ | exclusion | exclusion |
| star | ■ | upper bound | exclusion |
| stars | ■ | upper bound | exclusion |
| strong coloring number | ■ | exclusion | exclusion |
| strong d-coloring number | ■ | exclusion | unknown to HOPS |
| strong inf-coloring number | ■ | upper bound | exclusion |
| topological bandwidth | ■ | upper bound | exclusion |
| tree | ■ | upper bound | exclusion |
| tree-cut width | ■ | upper bound | exclusion |
| tree-independence number | ■ | exclusion | unknown to HOPS |
| tree-partition-width | ■ | upper bound | exclusion |
| treebandwidth | ■ | upper bound | exclusion |
| treedepth | ■ | upper bound | exclusion |
| treelength | ■ | exclusion | unknown to HOPS |
| treespan | ■ | upper bound | exclusion |
| treewidth | ■ | upper bound | exclusion |
| twin-cover number | ■ | upper bound | exclusion |
| twin-width | ■ | exclusion | upper bound |
| vertex connectivity | ■ | unknown to HOPS | unknown to HOPS |
| vertex cover | ■ | upper bound | exclusion |
| vertex integrity | ■ | upper bound | exclusion |
| weak coloring number | ■ | exclusion | exclusion |
| weak d-coloring number | ■ | exclusion | unknown to HOPS |
| weak inf-coloring number | ■ | upper bound | exclusion |
| weakly sparse | ■ | exclusion | unknown to HOPS |
| weakly sparse and merge width | ■ | exclusion | exclusion |
Results
- 2021 Twin-width I: Tractable
FOModel Checking by Bonnet, Kim, Thomassé, Watrigant- page 14 : boolean width upper bounds twin-width by an exponential function – Theorem 3: Every graph with boolean-width $k$ has twin-width at most $2^{k+1}-1$.
- 2012 New Width Parameters of Graphs by Vatshelle
- page 42 : boolean width upper bounds mim-width by a linear function – Theorem 4.2.10. Let $G$ be a graph, then $mimw(G) \le boolw(G) \le mimw(G) \log_2(n)$
- 2011 Boolean-width of graphs by Bui-Xuan, Telle, Vatshelle
- boolean width – \textbf{Definition 1.} A decomposition tree of a graph $G$ is a pair $(T,\delta)$ where $T$ is a tree having internal nodes of degree three and $\delta$ a bijection between the leaf set of $T$ and the vertex set of $G$. Removing an edge from $T$ results in two subtrees, and in a cut ${A,\overline{A}}$ of $G$ given by the two subsets of $V(G)$ in bijection $\delta$ with the leaves of the two subtrees. Let $f\colon w^V \to \mathbb{R}$ be a symmetric function that is also called a cut function: $f(A)=f(\overline{A})$ for all $A\subseteq V(G)$. The $f$-width of $(T,\delta)$ is the maximum value of $f(A)$ over all cuts ${A,\overline{A}}$ of $G$ given by the removal of an edge of $T$. … \textbf{Definition 2.} Let $G$ be a graph and $A \subseteq V(G)$. Define the set of unions of neighborhoods of $A$ across the cut ${A,\overline{A}}$ as $U(A) = {Y \subseteq \overline{A} \mid \exists X \subseteq A \land Y=N(X)\cap \overline{A}}$. The \emph{bool-dim}$\colon 2^{V(G)} \to \mathbb{R}$ function of a graph $G$ is defined as $\mathrm{bool-dim}(A)=\log_2 |U(A)|$. Using Definition 1 with $f=\mathrm{bool-dim}$ we define the boolean-width of a decomposition tree, denoted by $boolw(T,\delta)$, and the boolean-width of a graph, denoted by $boolw(G)$.
- boolean width upper bounds rank-width by an exponential function – \textbf{Corollary 1.} For any graph $G$ and decomposition tree $(T,\gamma)$ of $G$ it holds that … $\log_2 rw(G) \le boolw(G)$ …
- rank-width upper bounds boolean width by a polynomial function – \textbf{Corollary 1.} For any graph $G$ and decomposition tree $(T,\gamma)$ of $G$ it holds that … $boolw(G) \le \frac 14 rw^2(G)+O(rw(G))$.
- unknown source
- clique-width upper bounds boolean width by a linear function
- boolean width upper bounds clique-width by an exponential function
- branch width upper bounds boolean width by a linear function
- treewidth upper bounds boolean width by a linear function
- assumed
- boolean width is equivalent to boolean width – assumed