boolean width
equivalent to: clique-width, boolean width, inf-flip-width, module-width, rank-width, NLC-width
providers: ISGCI
Relations
Other | Relation from | Relation to |
---|---|---|
acyclic chromatic number | exclusion | exclusion |
arboricity | exclusion | exclusion |
average degree | exclusion | exclusion |
average distance | exclusion | exclusion |
bandwidth | upper bound | exclusion |
bipartite | unbounded | exclusion |
bipartite number | exclusion | unknown to HOPS |
bisection bandwidth | exclusion | exclusion |
block | unknown to HOPS | exclusion |
book thickness | exclusion | exclusion |
bounded components | upper bound | exclusion |
boxicity | exclusion | exclusion |
branch width | upper bound | exclusion |
c-closure | exclusion | exclusion |
carving-width | upper bound | exclusion |
chordal | unknown to HOPS | exclusion |
chordality | exclusion | exclusion |
chromatic number | exclusion | exclusion |
clique cover number | exclusion | exclusion |
clique-tree-width | upper bound | unknown to HOPS |
clique-width | upper bound | upper bound |
cluster | constant | exclusion |
co-cluster | constant | exclusion |
cograph | constant | exclusion |
complete | constant | exclusion |
connected | unbounded | unknown to HOPS |
cutwidth | upper bound | exclusion |
cycle | constant | exclusion |
cycles | constant | exclusion |
d-path-free | upper bound | exclusion |
degeneracy | exclusion | exclusion |
degree treewidth | upper bound | exclusion |
diameter | exclusion | exclusion |
diameter+max degree | upper bound | exclusion |
disjoint cycles | constant | exclusion |
distance to bipartite | exclusion | exclusion |
distance to block | unknown to HOPS | exclusion |
distance to bounded components | upper bound | exclusion |
distance to chordal | exclusion | exclusion |
distance to cluster | unknown to HOPS | exclusion |
distance to co-cluster | upper bound | exclusion |
distance to cograph | upper bound | exclusion |
distance to complete | upper bound | exclusion |
distance to edgeless | upper bound | exclusion |
distance to forest | upper bound | exclusion |
distance to interval | exclusion | exclusion |
distance to linear forest | upper bound | exclusion |
distance to maximum degree | exclusion | exclusion |
distance to outerplanar | upper bound | exclusion |
distance to perfect | exclusion | exclusion |
distance to planar | exclusion | exclusion |
distance to stars | upper bound | exclusion |
domatic number | exclusion | exclusion |
domination number | exclusion | exclusion |
edge clique cover number | upper bound | exclusion |
edge connectivity | exclusion | exclusion |
edgeless | constant | exclusion |
feedback edge set | upper bound | exclusion |
feedback vertex set | upper bound | exclusion |
forest | constant | exclusion |
genus | exclusion | exclusion |
girth | exclusion | exclusion |
grid | unbounded | exclusion |
h-index | exclusion | exclusion |
inf-flip-width | upper bound | upper bound |
interval | unknown to HOPS | exclusion |
iterated type partitions | upper bound | exclusion |
linear clique-width | upper bound | unknown to HOPS |
linear forest | constant | exclusion |
linear NLC-width | upper bound | unknown to HOPS |
linear rank-width | upper bound | unknown to HOPS |
maximum clique | exclusion | exclusion |
maximum degree | exclusion | exclusion |
maximum independent set | exclusion | exclusion |
maximum induced matching | exclusion | exclusion |
maximum leaf number | upper bound | exclusion |
maximum matching | unknown to HOPS | exclusion |
maximum matching on bipartite graphs | upper bound | exclusion |
mim-width | unknown to HOPS | upper bound |
minimum degree | exclusion | exclusion |
mm-width | upper bound | exclusion |
modular-width | upper bound | exclusion |
module-width | upper bound | upper bound |
neighborhood diversity | upper bound | exclusion |
NLC-width | upper bound | upper bound |
NLCT-width | upper bound | unknown to HOPS |
odd cycle transversal | exclusion | exclusion |
outerplanar | constant | exclusion |
path | constant | exclusion |
pathwidth | upper bound | exclusion |
pathwidth+maxdegree | upper bound | exclusion |
perfect | unbounded | exclusion |
planar | unbounded | exclusion |
radius-r flip-width | exclusion | upper bound |
rank-width | upper bound | upper bound |
shrub-depth | upper bound | exclusion |
sim-width | unknown to HOPS | upper bound |
star | constant | exclusion |
stars | constant | exclusion |
topological bandwidth | upper bound | exclusion |
tree | constant | exclusion |
tree-independence number | unknown to HOPS | unknown to HOPS |
treedepth | upper bound | exclusion |
treelength | exclusion | unknown to HOPS |
treewidth | upper bound | exclusion |
twin-cover number | upper bound | exclusion |
twin-width | exclusion | upper bound |
vertex connectivity | unknown to HOPS | exclusion |
vertex cover | upper bound | exclusion |
vertex integrity | upper bound | exclusion |
Results
- 2012 New Width Parameters of Graphs by Vatshelle
- page 42 : boolean width upper bounds mim-width by a linear function – Theorem 4.2.10. Let $G$ be a graph, then $mimw(G) \le boolw(G) \le mimw(G) \log_2(n)$
- 2011 Boolean-width of graphs by Bui-Xuan, Telle, Vatshelle
- boolean width – \textbf{Definition 1.} A decomposition tree of a graph $G$ is a pair $(T,\delta)$ where $T$ is a tree having internal nodes of degree three and $\delta$ a bijection between the leaf set of $T$ and the vertex set of $G$. Removing an edge from $T$ results in two subtrees, and in a cut ${A,\overline{A}}$ of $G$ given by the two subsets of $V(G)$ in bijection $\delta$ with the leaves of the two subtrees. Let $f\colon w^V \to \mathbb{R}$ be a symmetric function that is also called a cut function: $f(A)=f(\overline{A})$ for all $A\subseteq V(G)$. The $f$-width of $(T,\delta)$ is the maximum value of $f(A)$ over all cuts ${A,\overline{A}}$ of $G$ given by the removal of an edge of $T$. … \textbf{Definition 2.} Let $G$ be a graph and $A \subseteq V(G)$. Define the set of unions of neighborhoods of $A$ across the cut ${A,\overline{A}}$ as $U(A) = {Y \subseteq \overline{A} \mid \exists X \subseteq A \land Y=N(X)\cap \overline{A}}$. The \emph{bool-dim}$\colon 2^{V(G)} \to \mathbb{R}$ function of a graph $G$ is defined as $\mathrm{bool-dim}(A)=\log_2 |U(A)|$. Using Definition 1 with $f=\mathrm{bool-dim}$ we define the boolean-width of a decomposition tree, denoted by $boolw(T,\delta)$, and the boolean-width of a graph, denoted by $boolw(G)$.
- boolean width upper bounds rank-width by an exponential function – \textbf{Corollary 1.} For any graph $G$ and decomposition tree $(T,\gamma)$ of $G$ it holds that … $\log_2 rw(G) \le boolw(G)$ …
- rank-width upper bounds boolean width by a polynomial function – \textbf{Corollary 1.} For any graph $G$ and decomposition tree $(T,\gamma)$ of $G$ it holds that … $boolw(G) \le \frac 14 rw^2(G)+O(rw(G))$.
- https://dl.acm.org/doi/10.1145/3486655
- boolean width upper bounds twin-width by an exponential function – Theorem 3: Every graph with boolean-width $k$ has twin-width at most $2^{k+1}-1$.
- unknown source
- clique-width upper bounds boolean width by a linear function
- boolean width upper bounds clique-width by an exponential function
- branch width upper bounds boolean width by a linear function
- treewidth upper bounds boolean width by a computable function