maximum independent set
equivalent to: maximum independent set
providers: ISGCI
Relations
Other | Relation from | Relation to |
---|---|---|
acyclic chromatic number | exclusion | exclusion |
arboricity | exclusion | exclusion |
average degree | exclusion | exclusion |
average distance | exclusion | upper bound |
bandwidth | exclusion | exclusion |
bipartite | unbounded | exclusion |
bipartite number | exclusion | upper bound |
bisection bandwidth | exclusion | exclusion |
block | unbounded | exclusion |
book thickness | exclusion | exclusion |
boolean width | exclusion | exclusion |
bounded components | exclusion | exclusion |
boxicity | exclusion | exclusion |
branch width | exclusion | exclusion |
c-closure | exclusion | exclusion |
carving-width | exclusion | exclusion |
chordal | unbounded | exclusion |
chordality | exclusion | exclusion |
chromatic number | exclusion | exclusion |
clique cover number | upper bound | unknown to HOPS |
clique-tree-width | exclusion | exclusion |
clique-width | exclusion | exclusion |
cluster | unbounded | exclusion |
co-cluster | unbounded | exclusion |
cograph | unbounded | exclusion |
complete | constant | exclusion |
connected | unbounded | unknown to HOPS |
cutwidth | exclusion | exclusion |
cycle | unbounded | exclusion |
cycles | unbounded | exclusion |
d-path-free | exclusion | exclusion |
degeneracy | exclusion | exclusion |
degree treewidth | exclusion | exclusion |
diameter | exclusion | upper bound |
diameter+max degree | exclusion | exclusion |
disjoint cycles | unbounded | exclusion |
distance to bipartite | exclusion | exclusion |
distance to block | exclusion | exclusion |
distance to bounded components | exclusion | exclusion |
distance to chordal | exclusion | exclusion |
distance to cluster | exclusion | exclusion |
distance to co-cluster | exclusion | exclusion |
distance to cograph | exclusion | exclusion |
distance to complete | upper bound | exclusion |
distance to edgeless | exclusion | exclusion |
distance to forest | exclusion | exclusion |
distance to interval | exclusion | exclusion |
distance to linear forest | exclusion | exclusion |
distance to maximum degree | exclusion | exclusion |
distance to outerplanar | exclusion | exclusion |
distance to perfect | exclusion | exclusion |
distance to planar | exclusion | exclusion |
distance to stars | exclusion | exclusion |
domatic number | exclusion | exclusion |
domination number | unknown to HOPS | upper bound |
edge clique cover number | exclusion | exclusion |
edge connectivity | exclusion | exclusion |
edgeless | unbounded | exclusion |
feedback edge set | exclusion | exclusion |
feedback vertex set | exclusion | exclusion |
forest | unbounded | exclusion |
genus | exclusion | exclusion |
girth | exclusion | upper bound |
grid | unbounded | exclusion |
h-index | exclusion | exclusion |
inf-flip-width | exclusion | exclusion |
interval | unbounded | exclusion |
iterated type partitions | exclusion | exclusion |
linear clique-width | exclusion | exclusion |
linear forest | unbounded | exclusion |
linear NLC-width | exclusion | exclusion |
linear rank-width | exclusion | exclusion |
maximum clique | exclusion | exclusion |
maximum degree | exclusion | exclusion |
maximum induced matching | exclusion | upper bound |
maximum leaf number | exclusion | exclusion |
maximum matching | exclusion | exclusion |
maximum matching on bipartite graphs | exclusion | exclusion |
mim-width | exclusion | unknown to HOPS |
minimum degree | exclusion | exclusion |
mm-width | exclusion | exclusion |
modular-width | exclusion | exclusion |
module-width | exclusion | exclusion |
neighborhood diversity | exclusion | exclusion |
NLC-width | exclusion | exclusion |
NLCT-width | exclusion | exclusion |
odd cycle transversal | exclusion | exclusion |
outerplanar | unbounded | exclusion |
path | unbounded | exclusion |
pathwidth | exclusion | exclusion |
pathwidth+maxdegree | exclusion | exclusion |
perfect | unbounded | exclusion |
planar | unbounded | exclusion |
radius-r flip-width | exclusion | unknown to HOPS |
rank-width | exclusion | exclusion |
shrub-depth | exclusion | exclusion |
sim-width | exclusion | unknown to HOPS |
star | unknown to HOPS | exclusion |
stars | unbounded | exclusion |
topological bandwidth | exclusion | exclusion |
tree | unbounded | exclusion |
tree-independence number | exclusion | unknown to HOPS |
treedepth | exclusion | exclusion |
treelength | exclusion | upper bound |
treewidth | exclusion | exclusion |
twin-cover number | exclusion | exclusion |
twin-width | exclusion | exclusion |
vertex connectivity | unknown to HOPS | exclusion |
vertex cover | exclusion | exclusion |
vertex integrity | exclusion | exclusion |
Results
- 2019 The Graph Parameter Hierarchy by Sorge
- page 11 : clique cover number upper bounds maximum independent set by a linear function – Lemma 4.26. The minimum clique cover number $c$ strictly upper bounds the independence number $\alpha$.
- 1988 The average distanceisnot morethan the independence number by Chung
- maximum independent set upper bounds average distance by a linear function – [ed. paraphrased from another source] Let $G$ be a graph. Then $\bar{D} \le \alpha$, with equality holding if and only if $G$ is complete.
- unknown source
- maximum independent set upper bounds domination number by a linear function – Every maximal independent set is also a dominating set because any undominated vertex could be added to the independent set.
- maximum independent set upper bounds maximum induced matching by a linear function – Each edge of the induced matching can host at one vertex of the independent set.
- assumed
- maximum independent set upper bounds bipartite number by a linear function – folklore
- https://en.wikipedia.org/wiki/Maximal_independent_set
- maximum independent set – For a graph $G=(V,E)$, an independent set $S$ is a maximal independent set if for $v \in V$, one of the following is true: 1) $v \in S$ 2), $N(v) \cap S \ne \emptyset$ where $N(v)$ denotes the neighbors of $v$. … the largest maximum independent set of a graph is called a maximum independent set.