NLCT-width
functionally equivalent to: clique-tree-width
Relations
| Other | Relation from | Relation to | |
|---|---|---|---|
| acyclic chromatic number | ■ | exclusion | exclusion | 
| admissibility | ■ | exclusion | exclusion | 
| arboricity | ■ | exclusion | exclusion | 
| average degree | ■ | exclusion | exclusion | 
| average distance | ■ | exclusion | exclusion | 
| bandwidth | ■ | upper bound | exclusion | 
| bipartite | ■ | unbounded | exclusion | 
| bipartite number | ■ | exclusion | exclusion | 
| bisection bandwidth | ■ | exclusion | exclusion | 
| block | ■ | unknown to HOPS | exclusion | 
| book thickness | ■ | exclusion | exclusion | 
| boolean width | ■ | unknown to HOPS | upper bound | 
| bounded components | ■ | upper bound | exclusion | 
| bounded expansion | ■ | exclusion | avoids | 
| boxicity | ■ | exclusion | exclusion | 
| branch width | ■ | upper bound | exclusion | 
| c-closure | ■ | exclusion | exclusion | 
| carving-width | ■ | upper bound | exclusion | 
| chi-bounded | ■ | exclusion | upper bound | 
| chordal | ■ | unknown to HOPS | exclusion | 
| chordality | ■ | exclusion | unknown to HOPS | 
| chromatic number | ■ | exclusion | exclusion | 
| clique cover number | ■ | exclusion | exclusion | 
| clique-tree-width | ■ | upper bound | upper bound | 
| clique-width | ■ | unknown to HOPS | upper bound | 
| cluster | ■ | upper bound | exclusion | 
| co-cluster | ■ | upper bound | exclusion | 
| cograph | ■ | unknown to HOPS | exclusion | 
| complete | ■ | upper bound | exclusion | 
| connected | ■ | exclusion | avoids | 
| contraction complexity | ■ | upper bound | exclusion | 
| cutwidth | ■ | upper bound | exclusion | 
| cycle | ■ | upper bound | exclusion | 
| cycles | ■ | upper bound | exclusion | 
| d-admissibility | ■ | exclusion | unknown to HOPS | 
| d-path-free | ■ | upper bound | exclusion | 
| degeneracy | ■ | exclusion | exclusion | 
| degree treewidth | ■ | upper bound | exclusion | 
| diameter | ■ | exclusion | exclusion | 
| diameter+max degree | ■ | upper bound | exclusion | 
| distance to bipartite | ■ | exclusion | exclusion | 
| distance to block | ■ | unknown to HOPS | exclusion | 
| distance to bounded components | ■ | upper bound | exclusion | 
| distance to chordal | ■ | exclusion | exclusion | 
| distance to cluster | ■ | upper bound | exclusion | 
| distance to co-cluster | ■ | upper bound | exclusion | 
| distance to cograph | ■ | unknown to HOPS | exclusion | 
| distance to complete | ■ | upper bound | exclusion | 
| distance to edgeless | ■ | upper bound | exclusion | 
| distance to forest | ■ | upper bound | exclusion | 
| distance to interval | ■ | exclusion | exclusion | 
| distance to linear forest | ■ | upper bound | exclusion | 
| distance to maximum degree | ■ | exclusion | exclusion | 
| distance to outerplanar | ■ | upper bound | exclusion | 
| distance to perfect | ■ | exclusion | exclusion | 
| distance to planar | ■ | exclusion | exclusion | 
| distance to stars | ■ | upper bound | exclusion | 
| domatic number | ■ | exclusion | exclusion | 
| domination number | ■ | exclusion | exclusion | 
| domino treewidth | ■ | upper bound | exclusion | 
| edge clique cover number | ■ | upper bound | exclusion | 
| edge connectivity | ■ | exclusion | exclusion | 
| edge-cut width | ■ | upper bound | exclusion | 
| edge-treewidth | ■ | upper bound | exclusion | 
| edgeless | ■ | upper bound | avoids | 
| excluded minor | ■ | exclusion | avoids | 
| excluded planar minor | ■ | upper bound | avoids | 
| excluded top-minor | ■ | exclusion | avoids | 
| feedback edge set | ■ | upper bound | exclusion | 
| feedback vertex set | ■ | upper bound | exclusion | 
| flip-width | ■ | exclusion | upper bound | 
| forest | ■ | upper bound | exclusion | 
| genus | ■ | exclusion | exclusion | 
| grid | ■ | unbounded | exclusion | 
| h-index | ■ | exclusion | exclusion | 
| interval | ■ | unknown to HOPS | exclusion | 
| iterated type partitions | ■ | unknown to HOPS | exclusion | 
| linear clique-width | ■ | upper bound | unknown to HOPS | 
| linear forest | ■ | upper bound | exclusion | 
| linear NLC-width | ■ | upper bound | unknown to HOPS | 
| linear rank-width | ■ | upper bound | unknown to HOPS | 
| maximum clique | ■ | exclusion | exclusion | 
| maximum degree | ■ | exclusion | exclusion | 
| maximum independent set | ■ | exclusion | exclusion | 
| maximum induced matching | ■ | exclusion | exclusion | 
| maximum leaf number | ■ | upper bound | exclusion | 
| maximum matching | ■ | upper bound | exclusion | 
| maximum matching on bipartite graphs | ■ | upper bound | exclusion | 
| merge-width | ■ | exclusion | upper bound | 
| mim-width | ■ | unknown to HOPS | upper bound | 
| minimum degree | ■ | exclusion | exclusion | 
| mm-width | ■ | upper bound | exclusion | 
| modular-width | ■ | unknown to HOPS | exclusion | 
| module-width | ■ | unknown to HOPS | upper bound | 
| monadically dependent | ■ | exclusion | upper bound | 
| monadically stable | ■ | exclusion | unknown to HOPS | 
| neighborhood diversity | ■ | upper bound | exclusion | 
| NLC-width | ■ | unknown to HOPS | upper bound | 
| NLCT-width | ■ | equal | equal | 
| nowhere dense | ■ | exclusion | unknown to HOPS | 
| odd cycle transversal | ■ | exclusion | exclusion | 
| outerplanar | ■ | upper bound | exclusion | 
| overlap treewidth | ■ | upper bound | exclusion | 
| path | ■ | upper bound | exclusion | 
| pathwidth | ■ | upper bound | exclusion | 
| pathwidth+maxdegree | ■ | upper bound | exclusion | 
| perfect | ■ | unbounded | exclusion | 
| planar | ■ | unbounded | exclusion | 
| radius-inf flip-width | ■ | unknown to HOPS | upper bound | 
| radius-r flip-width | ■ | exclusion | upper bound | 
| rank-width | ■ | unknown to HOPS | upper bound | 
| series-parallel | ■ | unknown to HOPS | unknown to HOPS | 
| shrub-depth | ■ | upper bound | unknown to HOPS | 
| sim-width | ■ | exclusion | upper bound | 
| size | ■ | upper bound | exclusion | 
| slim tree-cut width | ■ | upper bound | exclusion | 
| sparse twin-width | ■ | exclusion | exclusion | 
| star | ■ | upper bound | exclusion | 
| stars | ■ | upper bound | exclusion | 
| strong coloring number | ■ | exclusion | exclusion | 
| strong d-coloring number | ■ | exclusion | unknown to HOPS | 
| strong inf-coloring number | ■ | upper bound | exclusion | 
| topological bandwidth | ■ | upper bound | exclusion | 
| tree | ■ | upper bound | exclusion | 
| tree-cut width | ■ | upper bound | exclusion | 
| tree-independence number | ■ | exclusion | unknown to HOPS | 
| tree-partition-width | ■ | upper bound | exclusion | 
| treebandwidth | ■ | upper bound | exclusion | 
| treedepth | ■ | upper bound | exclusion | 
| treelength | ■ | exclusion | unknown to HOPS | 
| treespan | ■ | upper bound | exclusion | 
| treewidth | ■ | upper bound | exclusion | 
| twin-cover number | ■ | upper bound | exclusion | 
| twin-width | ■ | exclusion | upper bound | 
| vertex connectivity | ■ | unknown to HOPS | unknown to HOPS | 
| vertex cover | ■ | upper bound | exclusion | 
| vertex integrity | ■ | upper bound | exclusion | 
| weak coloring number | ■ | exclusion | exclusion | 
| weak d-coloring number | ■ | exclusion | unknown to HOPS | 
| weak inf-coloring number | ■ | upper bound | exclusion | 
| weakly sparse | ■ | exclusion | unknown to HOPS | 
| weakly sparse and merge width | ■ | exclusion | exclusion | 
Results
- 2005 On the relationship between NLC-width and linear NLC-width by Gurski, Wanke
- page 8 : linear NLC-width upper bounds NLCT-width by a linear function
 - page 8 : NLCT-width upper bounds NLC-width by a linear function
 - page 8 : clique-tree-width upper bounds NLCT-width by a linear function
 - page 8 : NLCT-width upper bounds clique-tree-width by a linear function
 - page 8 : treewidth upper bounds NLCT-width by a computable function – The results of [23] imply that each graph class of bounded path-width has bounded linear NLC-width and that each graph class of bounded tree-width has bounded NLCT-width.
 
 - 1994 k-NLC graphs and polynomial algorithms by Wanke
- page 4 : NLCT-width – Definition 2.2. Let $k \in \mathbb N$ be a positive integer. A \emph{$k$-node label controlled (NLC) tree} is a $k$-NL graph defined as follows: …
 
 - assumed
- NLCT-width is equivalent to NLCT-width – assumed