pathwidth
abbr: pw
tags: linear variant
providers: ISGCI
Definition: Same as treewidth but restricted to have a tree decomposition that is a path.
Pathwidth is a linear variant of treewidth, its nice tree decomposition lacks the join node which can be the hard part of desigining a dynamic programming solution for treewidth.
Relations
| Other | Relation from | Relation to | |
|---|---|---|---|
| acyclic chromatic number | ■ | exclusion | upper bound |
| admissibility | ■ | exclusion | upper bound |
| arboricity | ■ | exclusion | upper bound |
| average degree | ■ | exclusion | upper bound |
| average distance | ■ | exclusion | exclusion |
| bandwidth | ■ | upper bound | exclusion |
| bipartite | ■ | unbounded | exclusion |
| bipartite number | ■ | exclusion | exclusion |
| bisection bandwidth | ■ | exclusion | exclusion |
| block | ■ | unbounded | exclusion |
| book thickness | ■ | exclusion | upper bound |
| boolean width | ■ | exclusion | upper bound |
| bounded components | ■ | upper bound | exclusion |
| bounded expansion | ■ | exclusion | upper bound |
| boxicity | ■ | exclusion | upper bound |
| branch width | ■ | exclusion | upper bound |
| c-closure | ■ | exclusion | exclusion |
| carving-width | ■ | unknown to HOPS | exclusion |
| chi-bounded | ■ | exclusion | upper bound |
| chordal | ■ | unbounded | exclusion |
| chordality | ■ | exclusion | upper bound |
| chromatic number | ■ | exclusion | upper bound |
| clique cover number | ■ | exclusion | exclusion |
| clique-tree-width | ■ | exclusion | upper bound |
| clique-width | ■ | exclusion | upper bound |
| cluster | ■ | unbounded | exclusion |
| co-cluster | ■ | unbounded | exclusion |
| cograph | ■ | unbounded | exclusion |
| complete | ■ | unbounded | exclusion |
| connected | ■ | exclusion | avoids |
| contraction complexity | ■ | unknown to HOPS | exclusion |
| cutwidth | ■ | upper bound | exclusion |
| cycle | ■ | upper bound | exclusion |
| cycles | ■ | upper bound | exclusion |
| d-admissibility | ■ | exclusion | upper bound |
| d-path-free | ■ | upper bound | exclusion |
| degeneracy | ■ | exclusion | upper bound |
| degree treewidth | ■ | unknown to HOPS | exclusion |
| diameter | ■ | exclusion | exclusion |
| diameter+max degree | ■ | upper bound | exclusion |
| distance to bipartite | ■ | exclusion | exclusion |
| distance to block | ■ | exclusion | exclusion |
| distance to bounded components | ■ | upper bound | exclusion |
| distance to chordal | ■ | exclusion | exclusion |
| distance to cluster | ■ | exclusion | exclusion |
| distance to co-cluster | ■ | exclusion | exclusion |
| distance to cograph | ■ | exclusion | exclusion |
| distance to complete | ■ | exclusion | exclusion |
| distance to edgeless | ■ | upper bound | exclusion |
| distance to forest | ■ | exclusion | exclusion |
| distance to interval | ■ | exclusion | exclusion |
| distance to linear forest | ■ | upper bound | exclusion |
| distance to maximum degree | ■ | exclusion | exclusion |
| distance to outerplanar | ■ | exclusion | exclusion |
| distance to perfect | ■ | exclusion | exclusion |
| distance to planar | ■ | exclusion | exclusion |
| distance to stars | ■ | upper bound | exclusion |
| domatic number | ■ | exclusion | upper bound |
| domination number | ■ | exclusion | exclusion |
| domino treewidth | ■ | unknown to HOPS | exclusion |
| edge clique cover number | ■ | exclusion | exclusion |
| edge connectivity | ■ | exclusion | upper bound |
| edge-cut width | ■ | exclusion | unknown to HOPS |
| edge-treewidth | ■ | exclusion | unknown to HOPS |
| edgeless | ■ | upper bound | avoids |
| excluded minor | ■ | exclusion | unknown to HOPS |
| excluded planar minor | ■ | unknown to HOPS | unknown to HOPS |
| excluded top-minor | ■ | exclusion | upper bound |
| feedback edge set | ■ | exclusion | exclusion |
| feedback vertex set | ■ | exclusion | exclusion |
| flip-width | ■ | exclusion | upper bound |
| forest | ■ | unbounded | exclusion |
| genus | ■ | exclusion | exclusion |
| grid | ■ | unbounded | exclusion |
| h-index | ■ | exclusion | exclusion |
| interval | ■ | unbounded | exclusion |
| iterated type partitions | ■ | exclusion | exclusion |
| linear clique-width | ■ | exclusion | upper bound |
| linear forest | ■ | upper bound | exclusion |
| linear NLC-width | ■ | exclusion | upper bound |
| linear rank-width | ■ | exclusion | upper bound |
| maximum clique | ■ | exclusion | upper bound |
| maximum degree | ■ | exclusion | exclusion |
| maximum independent set | ■ | exclusion | exclusion |
| maximum induced matching | ■ | exclusion | exclusion |
| maximum leaf number | ■ | upper bound | exclusion |
| maximum matching | ■ | upper bound | exclusion |
| maximum matching on bipartite graphs | ■ | upper bound | exclusion |
| merge-width | ■ | exclusion | upper bound |
| mim-width | ■ | exclusion | upper bound |
| minimum degree | ■ | exclusion | upper bound |
| mm-width | ■ | exclusion | upper bound |
| modular-width | ■ | exclusion | exclusion |
| module-width | ■ | exclusion | upper bound |
| monadically dependent | ■ | exclusion | upper bound |
| monadically stable | ■ | exclusion | upper bound |
| neighborhood diversity | ■ | exclusion | exclusion |
| NLC-width | ■ | exclusion | upper bound |
| NLCT-width | ■ | exclusion | upper bound |
| nowhere dense | ■ | exclusion | upper bound |
| odd cycle transversal | ■ | exclusion | exclusion |
| outerplanar | ■ | unknown to HOPS | exclusion |
| overlap treewidth | ■ | exclusion | unknown to HOPS |
| path | ■ | upper bound | exclusion |
| pathwidth | ■ | equal | equal |
| pathwidth+maxdegree | ■ | upper bound | exclusion |
| perfect | ■ | unbounded | exclusion |
| planar | ■ | unbounded | exclusion |
| radius-inf flip-width | ■ | exclusion | upper bound |
| radius-r flip-width | ■ | exclusion | upper bound |
| rank-width | ■ | exclusion | upper bound |
| series-parallel | ■ | unknown to HOPS | unknown to HOPS |
| shrub-depth | ■ | exclusion | unknown to HOPS |
| sim-width | ■ | exclusion | upper bound |
| size | ■ | upper bound | exclusion |
| slim tree-cut width | ■ | exclusion | unknown to HOPS |
| sparse twin-width | ■ | exclusion | upper bound |
| star | ■ | upper bound | exclusion |
| stars | ■ | upper bound | exclusion |
| strong coloring number | ■ | exclusion | upper bound |
| strong d-coloring number | ■ | exclusion | upper bound |
| strong inf-coloring number | ■ | exclusion | upper bound |
| topological bandwidth | ■ | upper bound | exclusion |
| tree | ■ | unbounded | exclusion |
| tree-cut width | ■ | exclusion | unknown to HOPS |
| tree-independence number | ■ | exclusion | upper bound |
| tree-partition-width | ■ | exclusion | unknown to HOPS |
| treebandwidth | ■ | exclusion | unknown to HOPS |
| treedepth | ■ | upper bound | exclusion |
| treelength | ■ | exclusion | unknown to HOPS |
| treespan | ■ | unknown to HOPS | exclusion |
| treewidth | ■ | exclusion | upper bound |
| twin-cover number | ■ | exclusion | exclusion |
| twin-width | ■ | exclusion | upper bound |
| vertex connectivity | ■ | unknown to HOPS | unknown to HOPS |
| vertex cover | ■ | upper bound | exclusion |
| vertex integrity | ■ | upper bound | exclusion |
| weak coloring number | ■ | exclusion | upper bound |
| weak d-coloring number | ■ | exclusion | upper bound |
| weak inf-coloring number | ■ | upper bound | exclusion |
| weakly sparse | ■ | exclusion | upper bound |
| weakly sparse and merge width | ■ | exclusion | upper bound |
Results
- 2019 The Graph Parameter Hierarchy by Sorge
- 2015 Linear rank-width and linear clique-width of trees by Adler, Kanté
- page 3 : pathwidth upper bounds linear rank-width by a computable function – Lemma 5. Any graph $G$ satisfies $\mathrm{lrw}(G) \le \mathrm{pw}(G)$.
- 2010 Comparing 17 graph parameters by Sasák
- 2009 Clique-Width is
NP-Complete by Fellows, Rosamond, Rotics, Szeider- page 8 : pathwidth upper bounds linear clique-width by a linear function – (5) $\mathrm{lin-cwd}(G) \le \mathrm{pwd}(G)+2$.
- 2005 On the relationship between NLC-width and linear NLC-width by Gurski, Wanke
- page 8 : pathwidth upper bounds linear NLC-width by a linear function – The results of [23] imply that each graph class of bounded path-width has bounded linear NLC-width and that each graph class of bounded tree-width has bounded NLCT-width.
- 1998 A partial $k$-arboretum of graphs with bounded treewidth by Bodlaender
- page 4 : pathwidth upper bounds treewidth by a linear function – Lemma 3. (a) For all graphs $G$, $pathwidth(G) \ge treewidth(G)$. …
- page 23 : bandwidth upper bounds pathwidth by a linear function – Theorem 44. For every graph $G$, the pathwidth of $G$ is at most the bandwidth of $G$, … Proof. Let $f \colon V\to {1,\dots,n}$ be a linear ordering of $G$ with bandwidth $k$. Then $(X_1,\dots,X_{n-k})$ with $X_i={f^{-1}(i), f^{-1}(i+1), \dots, f^{-1}(i+k)}$ is a path decomposition of $G$ with pathwidth $k$. …
- page 23 : topological bandwidth upper bounds pathwidth by a linear function – Theorem 45. For every graph $G$, the pathwidth of $G$ is at most the topological band-width of $G$.
- page 24 : cutwidth upper bounds pathwidth by a linear function – Theorem 47. For every graph $G$, the pathwidth of $G$ is at most the cutwidth of $G$.
- Comparing Graph Parameters by Schröder
- page 23 : graph classes with bounded feedback edge set are not bounded pathwidth – Proposition 3.16
- unknown source
- pathwidth upper bounds linear rank-width by a computable function
- distance to linear forest upper bounds pathwidth by a linear function – After removal of $k$ vertices the remaining class has a bounded width $w$. So by including the removed vertices in every bag, we can achieve decomposition of width $w+k$
- distance to linear forest upper bounds pathwidth by a linear function – After removal of $k$ vertices the remaining class has a bounded width $w$. So by including the removed vertices in every bag, we can achieve decomposition of width $w+k$
- cycles upper bounds pathwidth by a constant – trivially
- assumed
- pathwidth+maxdegree upper bounds pathwidth by a linear function – by definition
- pathwidth is equivalent to pathwidth – assumed