pathwidth
abbr: pw
tags: linear variant
equivalent to: pathwidth
providers: ISGCI
Relations
Other | Relation from | Relation to |
---|---|---|
acyclic chromatic number | exclusion | upper bound |
arboricity | exclusion | upper bound |
average degree | exclusion | upper bound |
average distance | exclusion | exclusion |
bandwidth | upper bound | exclusion |
bipartite | unbounded | exclusion |
bipartite number | exclusion | unknown to HOPS |
bisection bandwidth | exclusion | exclusion |
block | unbounded | exclusion |
book thickness | exclusion | upper bound |
boolean width | exclusion | upper bound |
bounded components | upper bound | exclusion |
boxicity | exclusion | upper bound |
branch width | exclusion | upper bound |
c-closure | exclusion | exclusion |
carving-width | unknown to HOPS | exclusion |
chordal | unbounded | exclusion |
chordality | exclusion | upper bound |
chromatic number | exclusion | upper bound |
clique cover number | exclusion | exclusion |
clique-tree-width | exclusion | upper bound |
clique-width | exclusion | upper bound |
cluster | unbounded | exclusion |
co-cluster | unbounded | exclusion |
cograph | unbounded | exclusion |
complete | unbounded | exclusion |
connected | unbounded | unknown to HOPS |
cutwidth | upper bound | exclusion |
cycle | constant | exclusion |
cycles | constant | exclusion |
d-path-free | upper bound | exclusion |
degeneracy | exclusion | upper bound |
degree treewidth | unknown to HOPS | exclusion |
diameter | exclusion | exclusion |
diameter+max degree | upper bound | exclusion |
disjoint cycles | unbounded | exclusion |
distance to bipartite | exclusion | exclusion |
distance to block | exclusion | exclusion |
distance to bounded components | upper bound | exclusion |
distance to chordal | exclusion | exclusion |
distance to cluster | exclusion | exclusion |
distance to co-cluster | exclusion | exclusion |
distance to cograph | exclusion | exclusion |
distance to complete | exclusion | exclusion |
distance to edgeless | upper bound | exclusion |
distance to forest | exclusion | exclusion |
distance to interval | exclusion | exclusion |
distance to linear forest | upper bound | exclusion |
distance to maximum degree | exclusion | exclusion |
distance to outerplanar | exclusion | exclusion |
distance to perfect | exclusion | exclusion |
distance to planar | exclusion | exclusion |
distance to stars | upper bound | exclusion |
domatic number | exclusion | upper bound |
domination number | exclusion | exclusion |
edge clique cover number | exclusion | exclusion |
edge connectivity | exclusion | upper bound |
edgeless | constant | exclusion |
feedback edge set | exclusion | exclusion |
feedback vertex set | exclusion | exclusion |
forest | unbounded | exclusion |
genus | exclusion | exclusion |
girth | exclusion | exclusion |
grid | unbounded | exclusion |
h-index | exclusion | exclusion |
inf-flip-width | exclusion | upper bound |
interval | unbounded | exclusion |
iterated type partitions | exclusion | exclusion |
linear clique-width | exclusion | upper bound |
linear forest | constant | exclusion |
linear NLC-width | exclusion | upper bound |
linear rank-width | exclusion | upper bound |
maximum clique | exclusion | upper bound |
maximum degree | exclusion | exclusion |
maximum independent set | exclusion | exclusion |
maximum induced matching | exclusion | exclusion |
maximum leaf number | upper bound | exclusion |
maximum matching | unknown to HOPS | exclusion |
maximum matching on bipartite graphs | upper bound | exclusion |
mim-width | exclusion | upper bound |
minimum degree | exclusion | upper bound |
mm-width | exclusion | upper bound |
modular-width | exclusion | exclusion |
module-width | exclusion | upper bound |
neighborhood diversity | exclusion | exclusion |
NLC-width | exclusion | upper bound |
NLCT-width | exclusion | upper bound |
odd cycle transversal | exclusion | exclusion |
outerplanar | unbounded | exclusion |
path | constant | exclusion |
pathwidth+maxdegree | upper bound | exclusion |
perfect | unbounded | exclusion |
planar | unbounded | exclusion |
radius-r flip-width | exclusion | upper bound |
rank-width | exclusion | upper bound |
shrub-depth | exclusion | unknown to HOPS |
sim-width | exclusion | upper bound |
star | constant | exclusion |
stars | constant | exclusion |
topological bandwidth | upper bound | exclusion |
tree | unbounded | exclusion |
tree-independence number | exclusion | upper bound |
treedepth | upper bound | exclusion |
treelength | exclusion | unknown to HOPS |
treewidth | exclusion | upper bound |
twin-cover number | exclusion | exclusion |
twin-width | exclusion | upper bound |
vertex connectivity | unknown to HOPS | unknown to HOPS |
vertex cover | upper bound | exclusion |
vertex integrity | upper bound | exclusion |
Results
- 2019 The Graph Parameter Hierarchy by Sorge
- 2015 Linear rank-width and linear clique-width of trees by Adler, Kanté
- page 3 : pathwidth upper bounds linear rank-width by a linear function – Lemma 5. Any graph $G$ satisfies $\mathrm{lrw}(G) \le \mathrm{pw}(G)$.
- 2010 Comparing 17 graph parameters by Sasák
- 2009 Clique-Width is
NP
-Complete by Fellows, Rosamond, Rotics, Szeider- page 8 : pathwidth upper bounds linear clique-width by a linear function – (5) $\mathrm{lin-cwd}(G) \le \mathrm{pwd}(G)+2$.
- 2005 On the relationship between NLC-width and linear NLC-width by Gurski, Wanke
- page 8 : pathwidth upper bounds linear NLC-width by a computable function – The results of [23] imply that each graph class of bounded path-width has bounded linear NLC-width and that each graph class of bounded tree-width has bounded NLCT-width.
- 1998 A partial $k$-arboretum of graphs with bounded treewidth by Bodlaender
- page 4 : pathwidth upper bounds treewidth by a linear function – Lemma 3. (a) For all graphs $G$, $pathwidth(G) \ge treewidth(G)$. …
- page 23 : bandwidth upper bounds pathwidth by a linear function – Theorem 44. For every graph $G$, the pathwidth of $G$ is at most the bandwidth of $G$, … Proof. Let $f \colon V\to {1,\dots,n}$ be a linear ordering of $G$ with bandwidth $k$. Then $(X_1,\dots,X_{n-k})$ with $X_i={f^{-1}(i), f^{-1}(i+1), \dots, f^{-1}(i+k)}$ is a path decomposition of $G$ with pathwidth $k$. …
- page 23 : topological bandwidth upper bounds pathwidth by a linear function – Theorem 45. For every graph $G$, the pathwidth of $G$ is at most the topological band-width of $G$.
- page 24 : cutwidth upper bounds pathwidth by a linear function – Theorem 47. For every graph $G$, the pathwidth of $G$ is at most the cutwidth of $G$.
- unknown source
- pathwidth upper bounds linear rank-width by a computable function
- distance to linear forest upper bounds pathwidth by a linear function – After removal of $k$ vertices the remaining class has a bounded width $w$. So by including the removed vertices in every bag, we can achieve decomposition of width $w+k$
- distance to linear forest upper bounds pathwidth by a linear function – After removal of $k$ vertices the remaining class has a bounded width $w$. So by including the removed vertices in every bag, we can achieve decomposition of width $w+k$
- graph class cycles has constant pathwidth – trivially
- https://mathworld.wolfram.com/Pathwidth.html
- pathwidth – The pathwidth of a graph $G$, also called the interval thickness, vertex separation number, and node searching number, is one less than the size of the largest set in a path decomposition G.
- assumed
- pathwidth+maxdegree upper bounds pathwidth by a linear function – by definition
- Comparing Graph Parameters by Schröder
- page 23 : bounded feedback edge set does not imply bounded pathwidth – Proposition 3.16