acyclic chromatic number
tags: coloring
providers: ISGCI
Relations
Other | Relation from | Relation to | |
---|---|---|---|
acyclic chromatic number | ■ | equal | equal |
arboricity | ■ | exclusion | upper bound |
average degree | ■ | exclusion | upper bound |
average distance | ■ | exclusion | exclusion |
bandwidth | ■ | upper bound | exclusion |
bipartite | ■ | unbounded | exclusion |
bipartite number | ■ | exclusion | unknown to HOPS |
bisection bandwidth | ■ | exclusion | exclusion |
block | ■ | unbounded | exclusion |
book thickness | ■ | upper bound | unknown to HOPS |
boolean width | ■ | exclusion | exclusion |
bounded components | ■ | upper bound | exclusion |
boxicity | ■ | exclusion | upper bound |
branch width | ■ | upper bound | exclusion |
c-closure | ■ | exclusion | exclusion |
carving-width | ■ | upper bound | exclusion |
chordal | ■ | unbounded | exclusion |
chordality | ■ | exclusion | upper bound |
chromatic number | ■ | exclusion | upper bound |
clique cover number | ■ | exclusion | exclusion |
clique-tree-width | ■ | exclusion | exclusion |
clique-width | ■ | exclusion | exclusion |
cluster | ■ | unbounded | exclusion |
co-cluster | ■ | unbounded | exclusion |
cograph | ■ | unbounded | exclusion |
complete | ■ | unbounded | exclusion |
connected | ■ | unbounded | exclusion |
contraction complexity | ■ | upper bound | exclusion |
cutwidth | ■ | upper bound | exclusion |
cycle | ■ | upper bound | exclusion |
cycles | ■ | upper bound | exclusion |
d-path-free | ■ | upper bound | exclusion |
degeneracy | ■ | exclusion | upper bound |
degree treewidth | ■ | upper bound | exclusion |
diameter | ■ | exclusion | exclusion |
diameter+max degree | ■ | upper bound | exclusion |
disconnected | ■ | unknown to HOPS | unknown to HOPS |
disjoint cycles | ■ | upper bound | exclusion |
distance to bipartite | ■ | exclusion | exclusion |
distance to block | ■ | exclusion | exclusion |
distance to bounded components | ■ | upper bound | exclusion |
distance to chordal | ■ | exclusion | exclusion |
distance to cluster | ■ | exclusion | exclusion |
distance to co-cluster | ■ | exclusion | exclusion |
distance to cograph | ■ | exclusion | exclusion |
distance to complete | ■ | exclusion | exclusion |
distance to disconnected | ■ | exclusion | upper bound |
distance to edgeless | ■ | upper bound | exclusion |
distance to forest | ■ | upper bound | exclusion |
distance to interval | ■ | exclusion | exclusion |
distance to linear forest | ■ | upper bound | exclusion |
distance to maximum degree | ■ | upper bound | exclusion |
distance to outerplanar | ■ | upper bound | exclusion |
distance to perfect | ■ | exclusion | exclusion |
distance to planar | ■ | upper bound | exclusion |
distance to stars | ■ | upper bound | exclusion |
domatic number | ■ | exclusion | upper bound |
domination number | ■ | exclusion | exclusion |
edge clique cover number | ■ | exclusion | exclusion |
edge connectivity | ■ | exclusion | upper bound |
edgeless | ■ | upper bound | exclusion |
feedback edge set | ■ | upper bound | exclusion |
feedback vertex set | ■ | upper bound | exclusion |
forest | ■ | upper bound | exclusion |
genus | ■ | upper bound | exclusion |
girth | ■ | exclusion | exclusion |
grid | ■ | upper bound | exclusion |
h-index | ■ | upper bound | exclusion |
inf-flip-width | ■ | exclusion | exclusion |
interval | ■ | unbounded | exclusion |
iterated type partitions | ■ | exclusion | exclusion |
linear clique-width | ■ | exclusion | exclusion |
linear forest | ■ | upper bound | exclusion |
linear NLC-width | ■ | exclusion | exclusion |
linear rank-width | ■ | exclusion | exclusion |
maximum clique | ■ | exclusion | upper bound |
maximum degree | ■ | upper bound | exclusion |
maximum independent set | ■ | exclusion | exclusion |
maximum induced matching | ■ | exclusion | exclusion |
maximum leaf number | ■ | upper bound | exclusion |
maximum matching | ■ | upper bound | exclusion |
maximum matching on bipartite graphs | ■ | upper bound | exclusion |
mim-width | ■ | exclusion | unknown to HOPS |
minimum degree | ■ | exclusion | upper bound |
mm-width | ■ | upper bound | exclusion |
modular-width | ■ | exclusion | exclusion |
module-width | ■ | exclusion | exclusion |
neighborhood diversity | ■ | exclusion | exclusion |
NLC-width | ■ | exclusion | exclusion |
NLCT-width | ■ | exclusion | exclusion |
odd cycle transversal | ■ | exclusion | exclusion |
outerplanar | ■ | upper bound | exclusion |
path | ■ | upper bound | exclusion |
pathwidth | ■ | upper bound | exclusion |
pathwidth+maxdegree | ■ | upper bound | exclusion |
perfect | ■ | unbounded | exclusion |
planar | ■ | upper bound | exclusion |
radius-r flip-width | ■ | exclusion | unknown to HOPS |
rank-width | ■ | exclusion | exclusion |
shrub-depth | ■ | exclusion | exclusion |
sim-width | ■ | exclusion | unknown to HOPS |
size | ■ | upper bound | exclusion |
star | ■ | upper bound | exclusion |
stars | ■ | upper bound | exclusion |
topological bandwidth | ■ | upper bound | exclusion |
tree | ■ | upper bound | exclusion |
tree-independence number | ■ | unknown to HOPS | unknown to HOPS |
treedepth | ■ | upper bound | exclusion |
treelength | ■ | exclusion | unknown to HOPS |
treewidth | ■ | upper bound | exclusion |
twin-cover number | ■ | exclusion | exclusion |
twin-width | ■ | exclusion | exclusion |
vertex connectivity | ■ | exclusion | upper bound |
vertex cover | ■ | upper bound | exclusion |
vertex integrity | ■ | upper bound | exclusion |
Results
- 2019 The Graph Parameter Hierarchy by Sorge
- page 3 : acyclic chromatic number – The \emph{acyclic chromatic number} of a graph $G = (V,E)$ is the smallest size of a vertex partition $P={V_1,\dots,V_\ell}$ such that each $V_i$ is an independent set and for all $V_i,V_j$ the graph $G[V_i \cup V_j]$ does not contain a cycle.
- page 8 : maximum degree upper bounds acyclic chromatic number by a polynomial function – Lemma 4.6 ([15]). The acyclic chromatic number $\chi_a$ is uppre bounded by the maximum degree $\Delta$ (for every graph with $\Delta > 4$). We have $\chi_a \le \Delta(\Delta-1)/2$.
- page 8 : h-index upper bounds acyclic chromatic number by a polynomial function – Lemma 4.7. The acyclic chromatic number $\chi_a$ is upper bounded by the $h$-index $h$. We have $\chi_a \le h(h+1)/2$.
- page 8 : genus upper bounds acyclic chromatic number by a linear function – Lemma 4.8 ([3]). The accylic chromatic number $\chi_a$ is upper bounded by the genus $g$. We have $\chi_a \le 4g+4$.
- page 8 : acyclic chromatic number upper bounds boxicity by a computable function – Lemma 4.9. The boxicity $b$ is upper bounded by the acyclic chromatic number $\chi_a$ (for every graph with $\chi_a>1$). We have $b \le \chi_a(\chi_a-1)$.
- page 9 : acyclic chromatic number upper bounds degeneracy by a polynomial function – Lemma 4.18. The acyclic chromatic number $a$ upper bounds the degeneracy $d$. We have $d \le 2 \binom a2 - 1$
- 2004 Track Layouts of Graphs by Dujmović, Pór, Wood
- page 14 : book thickness upper bounds acyclic chromatic number by a computable function – Theorem 5. Acyclic chromatic number is bounded by stack-number (ed: a.k.a. book-thickness). In particular, every $k$-stack graph $G$ has acyclich chromatic number $\chi_a(G) \le 80^{k(2k-1)}$.
- unknown source
- acyclic chromatic number upper bounds boxicity by a computable function
- book thickness upper bounds acyclic chromatic number by a computable function
- distance to planar upper bounds acyclic chromatic number by a computable function
- assumed
- acyclic chromatic number is equivalent to acyclic chromatic number – assumed