acyclic chromatic number
tags: coloring
providers: ISGCI
Definition: Minimum number of colors such that there is a proper coloring and the graph induced on any two colors is acyclic.
Relations
| Other | Relation from | Relation to | |
|---|---|---|---|
| acyclic chromatic number | ■ | equal | equal |
| admissibility | ■ | unknown to HOPS | unknown to HOPS |
| arboricity | ■ | exclusion | upper bound |
| average degree | ■ | exclusion | upper bound |
| average distance | ■ | exclusion | exclusion |
| bandwidth | ■ | upper bound | exclusion |
| bipartite | ■ | unbounded | exclusion |
| bipartite number | ■ | exclusion | exclusion |
| bisection bandwidth | ■ | exclusion | exclusion |
| block | ■ | unbounded | exclusion |
| book thickness | ■ | upper bound | unknown to HOPS |
| boolean width | ■ | exclusion | exclusion |
| bounded components | ■ | upper bound | exclusion |
| bounded expansion | ■ | unknown to HOPS | unknown to HOPS |
| boxicity | ■ | exclusion | upper bound |
| branch width | ■ | upper bound | exclusion |
| c-closure | ■ | exclusion | exclusion |
| carving-width | ■ | upper bound | exclusion |
| chi-bounded | ■ | exclusion | unknown to HOPS |
| chordal | ■ | unbounded | exclusion |
| chordality | ■ | exclusion | upper bound |
| chromatic number | ■ | exclusion | upper bound |
| clique cover number | ■ | exclusion | exclusion |
| clique-tree-width | ■ | exclusion | exclusion |
| clique-width | ■ | exclusion | exclusion |
| cluster | ■ | unbounded | exclusion |
| co-cluster | ■ | unbounded | exclusion |
| cograph | ■ | unbounded | exclusion |
| complete | ■ | unbounded | exclusion |
| connected | ■ | exclusion | avoids |
| contraction complexity | ■ | upper bound | exclusion |
| cutwidth | ■ | upper bound | exclusion |
| cycle | ■ | upper bound | exclusion |
| cycles | ■ | upper bound | exclusion |
| d-admissibility | ■ | unknown to HOPS | unknown to HOPS |
| d-path-free | ■ | upper bound | exclusion |
| degeneracy | ■ | exclusion | upper bound |
| degree treewidth | ■ | upper bound | exclusion |
| diameter | ■ | exclusion | exclusion |
| diameter+max degree | ■ | upper bound | exclusion |
| distance to bipartite | ■ | exclusion | exclusion |
| distance to block | ■ | exclusion | exclusion |
| distance to bounded components | ■ | upper bound | exclusion |
| distance to chordal | ■ | exclusion | exclusion |
| distance to cluster | ■ | exclusion | exclusion |
| distance to co-cluster | ■ | exclusion | exclusion |
| distance to cograph | ■ | exclusion | exclusion |
| distance to complete | ■ | exclusion | exclusion |
| distance to edgeless | ■ | upper bound | exclusion |
| distance to forest | ■ | upper bound | exclusion |
| distance to interval | ■ | exclusion | exclusion |
| distance to linear forest | ■ | upper bound | exclusion |
| distance to maximum degree | ■ | upper bound | exclusion |
| distance to outerplanar | ■ | upper bound | exclusion |
| distance to perfect | ■ | exclusion | exclusion |
| distance to planar | ■ | upper bound | exclusion |
| distance to stars | ■ | upper bound | exclusion |
| domatic number | ■ | exclusion | upper bound |
| domination number | ■ | exclusion | exclusion |
| domino treewidth | ■ | upper bound | exclusion |
| edge clique cover number | ■ | exclusion | exclusion |
| edge connectivity | ■ | exclusion | upper bound |
| edge-cut width | ■ | upper bound | exclusion |
| edge-treewidth | ■ | upper bound | exclusion |
| edgeless | ■ | upper bound | avoids |
| excluded minor | ■ | unknown to HOPS | unknown to HOPS |
| excluded planar minor | ■ | upper bound | avoids |
| excluded top-minor | ■ | unknown to HOPS | unknown to HOPS |
| feedback edge set | ■ | upper bound | exclusion |
| feedback vertex set | ■ | upper bound | exclusion |
| flip-width | ■ | exclusion | unknown to HOPS |
| forest | ■ | upper bound | exclusion |
| genus | ■ | upper bound | exclusion |
| grid | ■ | upper bound | exclusion |
| h-index | ■ | upper bound | exclusion |
| interval | ■ | unbounded | exclusion |
| iterated type partitions | ■ | exclusion | exclusion |
| linear clique-width | ■ | exclusion | exclusion |
| linear forest | ■ | upper bound | exclusion |
| linear NLC-width | ■ | exclusion | exclusion |
| linear rank-width | ■ | exclusion | exclusion |
| maximum clique | ■ | exclusion | upper bound |
| maximum degree | ■ | upper bound | exclusion |
| maximum independent set | ■ | exclusion | exclusion |
| maximum induced matching | ■ | exclusion | exclusion |
| maximum leaf number | ■ | upper bound | exclusion |
| maximum matching | ■ | upper bound | exclusion |
| maximum matching on bipartite graphs | ■ | upper bound | exclusion |
| merge-width | ■ | exclusion | unknown to HOPS |
| mim-width | ■ | exclusion | unknown to HOPS |
| minimum degree | ■ | exclusion | upper bound |
| mm-width | ■ | upper bound | exclusion |
| modular-width | ■ | exclusion | exclusion |
| module-width | ■ | exclusion | exclusion |
| monadically dependent | ■ | exclusion | unknown to HOPS |
| monadically stable | ■ | unknown to HOPS | unknown to HOPS |
| neighborhood diversity | ■ | exclusion | exclusion |
| NLC-width | ■ | exclusion | exclusion |
| NLCT-width | ■ | exclusion | exclusion |
| nowhere dense | ■ | unknown to HOPS | unknown to HOPS |
| odd cycle transversal | ■ | exclusion | exclusion |
| outerplanar | ■ | upper bound | exclusion |
| overlap treewidth | ■ | upper bound | exclusion |
| path | ■ | upper bound | exclusion |
| pathwidth | ■ | upper bound | exclusion |
| pathwidth+maxdegree | ■ | upper bound | exclusion |
| perfect | ■ | unbounded | exclusion |
| planar | ■ | upper bound | exclusion |
| radius-inf flip-width | ■ | exclusion | exclusion |
| radius-r flip-width | ■ | exclusion | unknown to HOPS |
| rank-width | ■ | exclusion | exclusion |
| series-parallel | ■ | unknown to HOPS | unknown to HOPS |
| shrub-depth | ■ | exclusion | exclusion |
| sim-width | ■ | exclusion | unknown to HOPS |
| size | ■ | upper bound | exclusion |
| slim tree-cut width | ■ | upper bound | exclusion |
| sparse twin-width | ■ | unknown to HOPS | exclusion |
| star | ■ | upper bound | exclusion |
| stars | ■ | upper bound | exclusion |
| strong coloring number | ■ | unknown to HOPS | unknown to HOPS |
| strong d-coloring number | ■ | unknown to HOPS | unknown to HOPS |
| strong inf-coloring number | ■ | upper bound | exclusion |
| topological bandwidth | ■ | upper bound | exclusion |
| tree | ■ | upper bound | exclusion |
| tree-cut width | ■ | upper bound | exclusion |
| tree-independence number | ■ | exclusion | unknown to HOPS |
| tree-partition-width | ■ | upper bound | exclusion |
| treebandwidth | ■ | upper bound | exclusion |
| treedepth | ■ | upper bound | exclusion |
| treelength | ■ | exclusion | unknown to HOPS |
| treespan | ■ | upper bound | exclusion |
| treewidth | ■ | upper bound | exclusion |
| twin-cover number | ■ | exclusion | exclusion |
| twin-width | ■ | exclusion | exclusion |
| vertex connectivity | ■ | unknown to HOPS | unknown to HOPS |
| vertex cover | ■ | upper bound | exclusion |
| vertex integrity | ■ | upper bound | exclusion |
| weak coloring number | ■ | unknown to HOPS | unknown to HOPS |
| weak d-coloring number | ■ | unknown to HOPS | unknown to HOPS |
| weak inf-coloring number | ■ | upper bound | exclusion |
| weakly sparse | ■ | exclusion | upper bound |
| weakly sparse and merge width | ■ | unknown to HOPS | unknown to HOPS |
Results
- 2019 The Graph Parameter Hierarchy by Sorge
- page 3 : acyclic chromatic number – The \emph{acyclic chromatic number} of a graph $G = (V,E)$ is the smallest size of a vertex partition $P={V_1,\dots,V_\ell}$ such that each $V_i$ is an independent set and for all $V_i,V_j$ the graph $G[V_i \cup V_j]$ does not contain a cycle.
- page 8 : maximum degree upper bounds acyclic chromatic number by a polynomial function – Lemma 4.6 ([15]). The acyclic chromatic number $\chi_a$ is uppre bounded by the maximum degree $\Delta$ (for every graph with $\Delta > 4$). We have $\chi_a \le \Delta(\Delta-1)/2$.
- page 8 : h-index upper bounds acyclic chromatic number by a polynomial function – Lemma 4.7. The acyclic chromatic number $\chi_a$ is upper bounded by the $h$-index $h$. We have $\chi_a \le h(h+1)/2$.
- page 8 : genus upper bounds acyclic chromatic number by a linear function – Lemma 4.8 ([3]). The accylic chromatic number $\chi_a$ is upper bounded by the genus $g$. We have $\chi_a \le 4g+4$.
- page 8 : acyclic chromatic number upper bounds boxicity by a computable function – Lemma 4.9. The boxicity $b$ is upper bounded by the acyclic chromatic number $\chi_a$ (for every graph with $\chi_a>1$). We have $b \le \chi_a(\chi_a-1)$.
- page 9 : acyclic chromatic number upper bounds degeneracy by a polynomial function – Lemma 4.18. The acyclic chromatic number $a$ upper bounds the degeneracy $d$. We have $d \le 2 \binom a2 - 1$
- 2004 Track Layouts of Graphs by Dujmović, Pór, Wood
- page 14 : book thickness upper bounds acyclic chromatic number by a computable function – Theorem 5. Acyclic chromatic number is bounded by stack-number (ed: a.k.a. book-thickness). In particular, every $k$-stack graph $G$ has acyclich chromatic number $\chi_a(G) \le 80^{k(2k-1)}$.
- unknown source
- acyclic chromatic number upper bounds boxicity by a computable function
- book thickness upper bounds acyclic chromatic number by a computable function
- distance to planar upper bounds acyclic chromatic number by a computable function
- assumed
- acyclic chromatic number is equivalent to acyclic chromatic number – assumed