modular-width
tags: module
Definition: Modular-width is the minimum number $k$ such that there is a partition into at most $k$ modules where each module either contains a single vertex or the graph induced by the module has modular-width $k$.
Relations
Other | Relation from | Relation to | |
---|---|---|---|
acyclic chromatic number | ■ | exclusion | exclusion |
admissibility | ■ | exclusion | exclusion |
arboricity | ■ | exclusion | exclusion |
average degree | ■ | exclusion | exclusion |
average distance | ■ | exclusion | upper bound |
bandwidth | ■ | unknown to HOPS | exclusion |
bipartite | ■ | unbounded | exclusion |
bipartite number | ■ | exclusion | exclusion |
bisection bandwidth | ■ | exclusion | exclusion |
block | ■ | unbounded | exclusion |
book thickness | ■ | exclusion | exclusion |
boolean width | ■ | exclusion | upper bound |
bounded components | ■ | unknown to HOPS | exclusion |
bounded expansion | ■ | exclusion | avoids |
boxicity | ■ | exclusion | exclusion |
branch width | ■ | exclusion | exclusion |
c-closure | ■ | exclusion | exclusion |
carving-width | ■ | exclusion | exclusion |
chi-bounded | ■ | exclusion | upper bound |
chordal | ■ | unbounded | exclusion |
chordality | ■ | exclusion | exclusion |
chromatic number | ■ | exclusion | exclusion |
clique cover number | ■ | exclusion | exclusion |
clique-tree-width | ■ | exclusion | unknown to HOPS |
clique-width | ■ | exclusion | upper bound |
cluster | ■ | upper bound | exclusion |
co-cluster | ■ | unknown to HOPS | exclusion |
cograph | ■ | unknown to HOPS | exclusion |
complete | ■ | upper bound | exclusion |
connected | ■ | exclusion | avoids |
contraction complexity | ■ | exclusion | exclusion |
cutwidth | ■ | exclusion | exclusion |
cycle | ■ | unknown to HOPS | exclusion |
cycles | ■ | unknown to HOPS | exclusion |
d-admissibility | ■ | exclusion | unknown to HOPS |
d-path-free | ■ | unknown to HOPS | exclusion |
degeneracy | ■ | exclusion | exclusion |
degree treewidth | ■ | exclusion | exclusion |
diameter | ■ | exclusion | upper bound |
diameter+max degree | ■ | unknown to HOPS | exclusion |
distance to bipartite | ■ | exclusion | exclusion |
distance to block | ■ | exclusion | exclusion |
distance to bounded components | ■ | unknown to HOPS | exclusion |
distance to chordal | ■ | exclusion | exclusion |
distance to cluster | ■ | exclusion | exclusion |
distance to co-cluster | ■ | exclusion | exclusion |
distance to cograph | ■ | exclusion | exclusion |
distance to complete | ■ | upper bound | exclusion |
distance to edgeless | ■ | upper bound | exclusion |
distance to forest | ■ | exclusion | exclusion |
distance to interval | ■ | exclusion | exclusion |
distance to linear forest | ■ | exclusion | exclusion |
distance to maximum degree | ■ | exclusion | exclusion |
distance to outerplanar | ■ | exclusion | exclusion |
distance to perfect | ■ | exclusion | exclusion |
distance to planar | ■ | exclusion | exclusion |
distance to stars | ■ | unknown to HOPS | exclusion |
domatic number | ■ | exclusion | exclusion |
domination number | ■ | exclusion | exclusion |
domino treewidth | ■ | exclusion | exclusion |
edge clique cover number | ■ | upper bound | exclusion |
edge connectivity | ■ | exclusion | exclusion |
edge-cut width | ■ | exclusion | exclusion |
edge-treewidth | ■ | exclusion | exclusion |
edgeless | ■ | upper bound | avoids |
excluded minor | ■ | exclusion | avoids |
excluded planar minor | ■ | unknown to HOPS | avoids |
excluded top-minor | ■ | exclusion | avoids |
feedback edge set | ■ | exclusion | exclusion |
feedback vertex set | ■ | exclusion | exclusion |
flip-width | ■ | exclusion | upper bound |
forest | ■ | unbounded | exclusion |
genus | ■ | exclusion | exclusion |
grid | ■ | unbounded | exclusion |
h-index | ■ | exclusion | exclusion |
interval | ■ | unbounded | exclusion |
iterated type partitions | ■ | upper bound | unknown to HOPS |
linear clique-width | ■ | exclusion | unknown to HOPS |
linear forest | ■ | unbounded | exclusion |
linear NLC-width | ■ | exclusion | unknown to HOPS |
linear rank-width | ■ | exclusion | unknown to HOPS |
maximum clique | ■ | exclusion | exclusion |
maximum degree | ■ | exclusion | exclusion |
maximum independent set | ■ | exclusion | exclusion |
maximum induced matching | ■ | exclusion | unknown to HOPS |
maximum leaf number | ■ | unknown to HOPS | exclusion |
maximum matching | ■ | upper bound | exclusion |
maximum matching on bipartite graphs | ■ | upper bound | exclusion |
merge-width | ■ | exclusion | upper bound |
mim-width | ■ | exclusion | upper bound |
minimum degree | ■ | exclusion | exclusion |
mm-width | ■ | exclusion | exclusion |
modular-width | ■ | equal | equal |
module-width | ■ | exclusion | upper bound |
monadically dependent | ■ | exclusion | upper bound |
monadically stable | ■ | exclusion | unknown to HOPS |
neighborhood diversity | ■ | upper bound | exclusion |
NLC-width | ■ | exclusion | upper bound |
NLCT-width | ■ | exclusion | unknown to HOPS |
nowhere dense | ■ | exclusion | unknown to HOPS |
odd cycle transversal | ■ | exclusion | exclusion |
outerplanar | ■ | unknown to HOPS | exclusion |
overlap treewidth | ■ | exclusion | exclusion |
path | ■ | unbounded | exclusion |
pathwidth | ■ | exclusion | exclusion |
pathwidth+maxdegree | ■ | exclusion | exclusion |
perfect | ■ | unbounded | exclusion |
planar | ■ | unbounded | exclusion |
radius-inf flip-width | ■ | exclusion | upper bound |
radius-r flip-width | ■ | exclusion | upper bound |
rank-width | ■ | exclusion | upper bound |
series-parallel | ■ | unknown to HOPS | unknown to HOPS |
shrub-depth | ■ | exclusion | exclusion |
sim-width | ■ | exclusion | upper bound |
size | ■ | upper bound | exclusion |
slim tree-cut width | ■ | exclusion | exclusion |
sparse twin-width | ■ | exclusion | exclusion |
star | ■ | upper bound | exclusion |
stars | ■ | unknown to HOPS | exclusion |
strong coloring number | ■ | exclusion | exclusion |
strong d-coloring number | ■ | exclusion | unknown to HOPS |
strong inf-coloring number | ■ | exclusion | exclusion |
topological bandwidth | ■ | unknown to HOPS | exclusion |
tree | ■ | unbounded | exclusion |
tree-cut width | ■ | exclusion | exclusion |
tree-independence number | ■ | exclusion | unknown to HOPS |
tree-partition-width | ■ | exclusion | exclusion |
treebandwidth | ■ | exclusion | exclusion |
treedepth | ■ | unknown to HOPS | exclusion |
treelength | ■ | exclusion | upper bound |
treespan | ■ | exclusion | exclusion |
treewidth | ■ | exclusion | exclusion |
twin-cover number | ■ | upper bound | exclusion |
twin-width | ■ | exclusion | upper bound |
vertex connectivity | ■ | unknown to HOPS | unknown to HOPS |
vertex cover | ■ | upper bound | exclusion |
vertex integrity | ■ | unknown to HOPS | exclusion |
weak coloring number | ■ | exclusion | exclusion |
weak d-coloring number | ■ | exclusion | unknown to HOPS |
weak inf-coloring number | ■ | unknown to HOPS | exclusion |
weakly sparse | ■ | exclusion | unknown to HOPS |
weakly sparse and merge width | ■ | exclusion | exclusion |
Results
- 2024 Parameterized complexity for iterated type partitions and modular-width by Cordasco, Gargano, Rescigno
- page 3 : iterated type partitions upper bounds modular-width by a linear function – By definition
- 2022 Expanding the Graph Parameter Hierarchy by Tran
- page 14 : modular-width – The modular-width $mw(G)$ of a graph $G$ is the smallest number $h$ such that a $k$-partition $(V_1,\dots,V_k)$ of $G$ exists, where $k \le h$ and each subset $V_i$, $i \in [k]$ is a module and either contains a single vertex or for which the modular-subgraph $G[V_i]$ has a modular-width of $h$.
- page 24 : graph class path is not constant modular-width – The Modular-width of a path $P$ with length $n > 3$ is $n$.
- page 25 : modular-width upper bounds clique-width by a computable function – Proposition 4.6. Modular-width strictly upper bounds Clique-width.
- page 25 : graph classes with bounded clique-width are not bounded modular-width – Proposition 4.6. Modular-width strictly upper bounds Clique-width.
- page 25 : modular-width upper bounds diameter by a computable function – Theorem 4.7. Modular-width strictly upper bounds Max Diameter of Components.
- page 25 : graph classes with bounded diameter are not bounded modular-width – Theorem 4.7. Modular-width strictly upper bounds Max Diameter of Components.
- page 28 : graph classes with bounded modular-width are not bounded distance to cluster – Proposition 4.10. Modular-width is incomparable to Distance to Cluster.
- page 28 : graph classes with bounded distance to cluster are not bounded modular-width – Proposition 4.10. Modular-width is incomparable to Distance to Cluster.
- page 28 : graph classes with bounded modular-width are not bounded distance to co-cluster – Proposition 4.11. Modular-width is incomparable to Distance to Co-Cluster.
- page 28 : graph classes with bounded distance to co-cluster are not bounded modular-width – Proposition 4.11. Modular-width is incomparable to Distance to Co-Cluster.
- page 30 : graph classes with bounded modular-width are not bounded chordality – Theorem 4.16. Modular-width is incomparable to Chordality.
- page 30 : graph classes with bounded chordality are not bounded modular-width – Theorem 4.16. Modular-width is incomparable to Chordality.
- 2013 Parameterized Algorithms for Modular-Width by Gajarský, Lampis, Ordyniak
- page 6 : neighborhood diversity upper bounds modular-width by a linear function – Theorem 3. Let $G$ be a graph. Then $\mathrm{mw}(G) \le \mathrm{nd}(G)$ and $\mathrm{mw}(G) \le 2\mathrm{tc}(G) + \mathrm{tc}(G)$. Furthermore, both inequalities are strict, …
- page 6 : graph classes with bounded modular-width are not bounded neighborhood diversity – Theorem 3. Let $G$ be a graph. Then $\mathrm{mw}(G) \le \mathrm{nd}(G)$ and $\mathrm{mw}(G) \le 2\mathrm{tc}(G) + \mathrm{tc}(G)$. Furthermore, both inequalities are strict, …
- page 6 : twin-cover number upper bounds modular-width by an exponential function – Theorem 3. Let $G$ be a graph. Then $\mathrm{mw}(G) \le \mathrm{nd}(G)$ and $\mathrm{mw}(G) \le 2\mathrm{tc}(G) + \mathrm{tc}(G)$. Furthermore, both inequalities are strict, …
- page 6 : graph classes with bounded modular-width are not bounded twin-cover number – Theorem 3. Let $G$ be a graph. Then $\mathrm{mw}(G) \le \mathrm{nd}(G)$ and $\mathrm{mw}(G) \le 2\mathrm{tc}(G) + \mathrm{tc}(G)$. Furthermore, both inequalities are strict, …
- page 8 : graph classes with bounded modular-width are not bounded shrub-depth – Theorem 4. There are classes of graphs with unbounded modular-width and bounded shrub-depth and vice versa.
- page 8 : graph classes with bounded shrub-depth are not bounded modular-width – Theorem 4. There are classes of graphs with unbounded modular-width and bounded shrub-depth and vice versa.
- unknown source
- modular-width upper bounds clique-width by a computable function
- modular-width upper bounds diameter by a computable function
- assumed
- modular-width is equivalent to modular-width – assumed