feedback vertex set
abbr: fvs
tags: vertex removal
functionally equivalent to: distance to forest
providers: PACE
Definition: The minimum set of vertices $S$ such that every cycle in the graph contains at least one vertex of $S$.
Feedback vertex set, also called cycle transversal, is very simiar to vertex cover but focuses on cycles instead of edges. With bounded feedback vertex set, we can partition the graph into a modulator of $k$ vertices and a forest. It generalizes feedback edge set for the price of having an arbitrary connection from its modulator to the forest.
Relations
Other | Relation from | Relation to | |
---|---|---|---|
acyclic chromatic number | ■ | exclusion | upper bound |
admissibility | ■ | exclusion | upper bound |
arboricity | ■ | exclusion | upper bound |
average degree | ■ | exclusion | upper bound |
average distance | ■ | exclusion | exclusion |
bandwidth | ■ | exclusion | exclusion |
bipartite | ■ | unbounded | exclusion |
bipartite number | ■ | exclusion | exclusion |
bisection bandwidth | ■ | exclusion | exclusion |
block | ■ | unbounded | exclusion |
book thickness | ■ | exclusion | upper bound |
boolean width | ■ | exclusion | upper bound |
bounded components | ■ | exclusion | exclusion |
bounded expansion | ■ | exclusion | upper bound |
boxicity | ■ | exclusion | upper bound |
branch width | ■ | exclusion | upper bound |
c-closure | ■ | exclusion | exclusion |
carving-width | ■ | exclusion | exclusion |
chi-bounded | ■ | exclusion | upper bound |
chordal | ■ | unbounded | exclusion |
chordality | ■ | exclusion | upper bound |
chromatic number | ■ | exclusion | upper bound |
clique cover number | ■ | exclusion | exclusion |
clique-tree-width | ■ | exclusion | upper bound |
clique-width | ■ | exclusion | upper bound |
cluster | ■ | unbounded | exclusion |
co-cluster | ■ | unbounded | exclusion |
cograph | ■ | unbounded | exclusion |
complete | ■ | unbounded | exclusion |
connected | ■ | exclusion | avoids |
contraction complexity | ■ | exclusion | exclusion |
cutwidth | ■ | exclusion | exclusion |
cycle | ■ | upper bound | exclusion |
cycles | ■ | unbounded | exclusion |
d-admissibility | ■ | exclusion | upper bound |
d-path-free | ■ | exclusion | exclusion |
degeneracy | ■ | exclusion | upper bound |
degree treewidth | ■ | exclusion | exclusion |
diameter | ■ | exclusion | exclusion |
diameter+max degree | ■ | exclusion | exclusion |
distance to bipartite | ■ | exclusion | upper bound |
distance to block | ■ | exclusion | upper bound |
distance to bounded components | ■ | exclusion | exclusion |
distance to chordal | ■ | exclusion | upper bound |
distance to cluster | ■ | exclusion | exclusion |
distance to co-cluster | ■ | exclusion | exclusion |
distance to cograph | ■ | exclusion | exclusion |
distance to complete | ■ | exclusion | exclusion |
distance to edgeless | ■ | upper bound | exclusion |
distance to forest | ■ | equal | equal |
distance to interval | ■ | exclusion | exclusion |
distance to linear forest | ■ | upper bound | exclusion |
distance to maximum degree | ■ | exclusion | exclusion |
distance to outerplanar | ■ | exclusion | upper bound |
distance to perfect | ■ | exclusion | upper bound |
distance to planar | ■ | exclusion | upper bound |
distance to stars | ■ | upper bound | exclusion |
domatic number | ■ | exclusion | upper bound |
domination number | ■ | exclusion | exclusion |
domino treewidth | ■ | exclusion | exclusion |
edge clique cover number | ■ | exclusion | exclusion |
edge connectivity | ■ | exclusion | upper bound |
edge-cut width | ■ | unknown to HOPS | unknown to HOPS |
edge-treewidth | ■ | exclusion | unknown to HOPS |
edgeless | ■ | upper bound | avoids |
excluded minor | ■ | exclusion | unknown to HOPS |
excluded planar minor | ■ | unknown to HOPS | unknown to HOPS |
excluded top-minor | ■ | exclusion | upper bound |
feedback edge set | ■ | upper bound | exclusion |
feedback vertex set | ■ | equal | equal |
flip-width | ■ | exclusion | upper bound |
forest | ■ | upper bound | exclusion |
genus | ■ | exclusion | exclusion |
grid | ■ | unbounded | exclusion |
h-index | ■ | exclusion | exclusion |
interval | ■ | unbounded | exclusion |
iterated type partitions | ■ | exclusion | exclusion |
linear clique-width | ■ | exclusion | unknown to HOPS |
linear forest | ■ | upper bound | exclusion |
linear NLC-width | ■ | exclusion | unknown to HOPS |
linear rank-width | ■ | exclusion | unknown to HOPS |
maximum clique | ■ | exclusion | upper bound |
maximum degree | ■ | exclusion | exclusion |
maximum independent set | ■ | exclusion | exclusion |
maximum induced matching | ■ | exclusion | exclusion |
maximum leaf number | ■ | upper bound | exclusion |
maximum matching | ■ | upper bound | exclusion |
maximum matching on bipartite graphs | ■ | upper bound | exclusion |
merge-width | ■ | exclusion | upper bound |
mim-width | ■ | exclusion | upper bound |
minimum degree | ■ | exclusion | upper bound |
mm-width | ■ | exclusion | upper bound |
modular-width | ■ | exclusion | exclusion |
module-width | ■ | exclusion | upper bound |
monadically dependent | ■ | exclusion | upper bound |
monadically stable | ■ | exclusion | upper bound |
neighborhood diversity | ■ | exclusion | exclusion |
NLC-width | ■ | exclusion | upper bound |
NLCT-width | ■ | exclusion | upper bound |
nowhere dense | ■ | exclusion | upper bound |
odd cycle transversal | ■ | exclusion | upper bound |
outerplanar | ■ | unknown to HOPS | exclusion |
overlap treewidth | ■ | exclusion | unknown to HOPS |
path | ■ | upper bound | exclusion |
pathwidth | ■ | exclusion | exclusion |
pathwidth+maxdegree | ■ | exclusion | exclusion |
perfect | ■ | unbounded | exclusion |
planar | ■ | unbounded | exclusion |
radius-inf flip-width | ■ | exclusion | upper bound |
radius-r flip-width | ■ | exclusion | upper bound |
rank-width | ■ | exclusion | upper bound |
series-parallel | ■ | unknown to HOPS | unknown to HOPS |
shrub-depth | ■ | exclusion | unknown to HOPS |
sim-width | ■ | exclusion | upper bound |
size | ■ | upper bound | exclusion |
slim tree-cut width | ■ | exclusion | unknown to HOPS |
sparse twin-width | ■ | exclusion | upper bound |
star | ■ | upper bound | exclusion |
stars | ■ | upper bound | exclusion |
strong coloring number | ■ | exclusion | upper bound |
strong d-coloring number | ■ | exclusion | upper bound |
strong inf-coloring number | ■ | exclusion | upper bound |
topological bandwidth | ■ | exclusion | exclusion |
tree | ■ | upper bound | exclusion |
tree-cut width | ■ | exclusion | unknown to HOPS |
tree-independence number | ■ | exclusion | upper bound |
tree-partition-width | ■ | exclusion | unknown to HOPS |
treebandwidth | ■ | exclusion | unknown to HOPS |
treedepth | ■ | exclusion | exclusion |
treelength | ■ | exclusion | unknown to HOPS |
treespan | ■ | exclusion | exclusion |
treewidth | ■ | exclusion | upper bound |
twin-cover number | ■ | exclusion | exclusion |
twin-width | ■ | exclusion | upper bound |
vertex connectivity | ■ | unknown to HOPS | unknown to HOPS |
vertex cover | ■ | upper bound | exclusion |
vertex integrity | ■ | exclusion | exclusion |
weak coloring number | ■ | exclusion | upper bound |
weak d-coloring number | ■ | exclusion | upper bound |
weak inf-coloring number | ■ | exclusion | exclusion |
weakly sparse | ■ | exclusion | upper bound |
weakly sparse and merge width | ■ | exclusion | upper bound |
Results
- 2019 The Graph Parameter Hierarchy by Sorge
- page 10 : feedback vertex set upper bounds distance to chordal by a linear function – Lemma 4.20. The feedback edge set number $f$ upper bounds the distance to a chordal graph $c$. We have $c \le f$.
- assumed
- feedback vertex set is equivalent to feedback vertex set – assumed
- unknown source
- feedback edge set upper bounds feedback vertex set by a linear function – Given solution to feedback edge set one can remove one vertex incident to the solution edges to obtain feedback vertex set.
- feedback vertex set is equivalent to distance to forest
- distance to forest is equivalent to feedback vertex set
- feedback vertex set upper bounds distance to outerplanar by a computable function