tree-partition-width
tags: tree decomposition
Definition: see On tree-partition-width by Wood
Relations
| Other | Relation from | Relation to | |
|---|---|---|---|
| acyclic chromatic number | ■ | exclusion | upper bound |
| admissibility | ■ | exclusion | upper bound |
| arboricity | ■ | exclusion | upper bound |
| average degree | ■ | exclusion | upper bound |
| average distance | ■ | exclusion | exclusion |
| bandwidth | ■ | upper bound | exclusion |
| bipartite | ■ | unbounded | exclusion |
| bipartite number | ■ | exclusion | exclusion |
| bisection bandwidth | ■ | exclusion | exclusion |
| block | ■ | unbounded | exclusion |
| book thickness | ■ | exclusion | upper bound |
| boolean width | ■ | exclusion | upper bound |
| bounded components | ■ | upper bound | exclusion |
| bounded expansion | ■ | exclusion | upper bound |
| boxicity | ■ | exclusion | upper bound |
| branch width | ■ | exclusion | upper bound |
| c-closure | ■ | exclusion | unknown to HOPS |
| carving-width | ■ | upper bound | exclusion |
| chi-bounded | ■ | exclusion | upper bound |
| chordal | ■ | unbounded | exclusion |
| chordality | ■ | exclusion | upper bound |
| chromatic number | ■ | exclusion | upper bound |
| clique cover number | ■ | exclusion | exclusion |
| clique-tree-width | ■ | exclusion | upper bound |
| clique-width | ■ | exclusion | upper bound |
| cluster | ■ | unbounded | exclusion |
| co-cluster | ■ | unbounded | exclusion |
| cograph | ■ | unbounded | exclusion |
| complete | ■ | unbounded | exclusion |
| connected | ■ | exclusion | avoids |
| contraction complexity | ■ | upper bound | exclusion |
| cutwidth | ■ | upper bound | exclusion |
| cycle | ■ | upper bound | exclusion |
| cycles | ■ | upper bound | exclusion |
| d-admissibility | ■ | exclusion | upper bound |
| d-path-free | ■ | unknown to HOPS | exclusion |
| degeneracy | ■ | exclusion | upper bound |
| degree treewidth | ■ | non-tight bounds | exclusion |
| diameter | ■ | exclusion | exclusion |
| diameter+max degree | ■ | upper bound | exclusion |
| distance to bipartite | ■ | exclusion | exclusion |
| distance to block | ■ | exclusion | exclusion |
| distance to bounded components | ■ | unknown to HOPS | exclusion |
| distance to chordal | ■ | exclusion | exclusion |
| distance to cluster | ■ | exclusion | exclusion |
| distance to co-cluster | ■ | exclusion | exclusion |
| distance to cograph | ■ | exclusion | exclusion |
| distance to complete | ■ | exclusion | exclusion |
| distance to edgeless | ■ | unknown to HOPS | exclusion |
| distance to forest | ■ | unknown to HOPS | exclusion |
| distance to interval | ■ | exclusion | exclusion |
| distance to linear forest | ■ | unknown to HOPS | exclusion |
| distance to maximum degree | ■ | exclusion | exclusion |
| distance to outerplanar | ■ | unknown to HOPS | exclusion |
| distance to perfect | ■ | exclusion | exclusion |
| distance to planar | ■ | exclusion | exclusion |
| distance to stars | ■ | unknown to HOPS | exclusion |
| domatic number | ■ | exclusion | upper bound |
| domination number | ■ | exclusion | exclusion |
| domino treewidth | ■ | upper bound | exclusion |
| edge clique cover number | ■ | exclusion | exclusion |
| edge connectivity | ■ | exclusion | upper bound |
| edge-cut width | ■ | upper bound | unknown to HOPS |
| edge-treewidth | ■ | upper bound | unknown to HOPS |
| edgeless | ■ | upper bound | avoids |
| excluded minor | ■ | exclusion | unknown to HOPS |
| excluded planar minor | ■ | unknown to HOPS | unknown to HOPS |
| excluded top-minor | ■ | exclusion | upper bound |
| feedback edge set | ■ | upper bound | exclusion |
| feedback vertex set | ■ | unknown to HOPS | exclusion |
| flip-width | ■ | exclusion | upper bound |
| forest | ■ | upper bound | exclusion |
| genus | ■ | exclusion | exclusion |
| grid | ■ | unbounded | exclusion |
| h-index | ■ | exclusion | exclusion |
| interval | ■ | unbounded | exclusion |
| iterated type partitions | ■ | exclusion | exclusion |
| linear clique-width | ■ | exclusion | unknown to HOPS |
| linear forest | ■ | upper bound | exclusion |
| linear NLC-width | ■ | exclusion | unknown to HOPS |
| linear rank-width | ■ | exclusion | unknown to HOPS |
| maximum clique | ■ | exclusion | upper bound |
| maximum degree | ■ | exclusion | exclusion |
| maximum independent set | ■ | exclusion | exclusion |
| maximum induced matching | ■ | exclusion | exclusion |
| maximum leaf number | ■ | upper bound | exclusion |
| maximum matching | ■ | unknown to HOPS | exclusion |
| maximum matching on bipartite graphs | ■ | unknown to HOPS | exclusion |
| merge-width | ■ | exclusion | upper bound |
| mim-width | ■ | exclusion | upper bound |
| minimum degree | ■ | exclusion | upper bound |
| mm-width | ■ | exclusion | upper bound |
| modular-width | ■ | exclusion | exclusion |
| module-width | ■ | exclusion | upper bound |
| monadically dependent | ■ | exclusion | upper bound |
| monadically stable | ■ | exclusion | upper bound |
| neighborhood diversity | ■ | exclusion | exclusion |
| NLC-width | ■ | exclusion | upper bound |
| NLCT-width | ■ | exclusion | upper bound |
| nowhere dense | ■ | exclusion | upper bound |
| odd cycle transversal | ■ | exclusion | exclusion |
| outerplanar | ■ | unknown to HOPS | exclusion |
| overlap treewidth | ■ | unknown to HOPS | unknown to HOPS |
| path | ■ | upper bound | exclusion |
| pathwidth | ■ | unknown to HOPS | exclusion |
| pathwidth+maxdegree | ■ | upper bound | exclusion |
| perfect | ■ | unbounded | exclusion |
| planar | ■ | unbounded | exclusion |
| radius-inf flip-width | ■ | exclusion | upper bound |
| radius-r flip-width | ■ | exclusion | upper bound |
| rank-width | ■ | exclusion | upper bound |
| series-parallel | ■ | unknown to HOPS | unknown to HOPS |
| shrub-depth | ■ | exclusion | unknown to HOPS |
| sim-width | ■ | exclusion | upper bound |
| size | ■ | upper bound | exclusion |
| slim tree-cut width | ■ | upper bound | unknown to HOPS |
| sparse twin-width | ■ | exclusion | upper bound |
| star | ■ | upper bound | exclusion |
| stars | ■ | upper bound | exclusion |
| strong coloring number | ■ | exclusion | upper bound |
| strong d-coloring number | ■ | exclusion | upper bound |
| strong inf-coloring number | ■ | exclusion | upper bound |
| topological bandwidth | ■ | unknown to HOPS | exclusion |
| tree | ■ | upper bound | exclusion |
| tree-cut width | ■ | upper bound | unknown to HOPS |
| tree-independence number | ■ | exclusion | upper bound |
| tree-partition-width | ■ | equal | equal |
| treebandwidth | ■ | exclusion | upper bound |
| treedepth | ■ | unknown to HOPS | exclusion |
| treelength | ■ | exclusion | unknown to HOPS |
| treespan | ■ | upper bound | exclusion |
| treewidth | ■ | exclusion | upper bound |
| twin-cover number | ■ | exclusion | exclusion |
| twin-width | ■ | exclusion | upper bound |
| vertex connectivity | ■ | unknown to HOPS | unknown to HOPS |
| vertex cover | ■ | unknown to HOPS | exclusion |
| vertex integrity | ■ | unknown to HOPS | exclusion |
| weak coloring number | ■ | exclusion | upper bound |
| weak d-coloring number | ■ | exclusion | upper bound |
| weak inf-coloring number | ■ | unknown to HOPS | exclusion |
| weakly sparse | ■ | exclusion | upper bound |
| weakly sparse and merge width | ■ | exclusion | upper bound |
Results
- 2025 On a tree-based variant of bandwidth and forbidding simple topological minors by Jacob, Lochet, Paul
- page 7 : tree-partition-width upper bounds treebandwidth by a linear function – By rooting the tree-partition arbitrarily and replacing each bag by an arbitrary linear ordering of its vertices one derives ${\rm tbw}(G) \le 2 \cdot {\rm tpw}(G)$. However, some graphs of treebandwidth 2 have unbounded tree-partition-width: …
- page 7 : graph classes with bounded treebandwidth are not bounded tree-partition-width – By rooting the tree-partition arbitrarily and replacing each bag by an arbitrary linear ordering of its vertices one derives ${\rm tbw}(G) \le 2 \cdot {\rm tpw}(G)$. However, some graphs of treebandwidth 2 have unbounded tree-partition-width: …
- 2009 On tree-partition-width by Wood
- page 1 : tree-partition-width – A graph $H$ is a partition of a graph $G$ if: each vertex of $H$ is a set of vertices of $G$ (called a bag), every evrtex of $G$ is in exactly one bag of $H$, and distinct bags $A$ and $B$ are adjacent in $H$ if and only if there is an edge of $G$ with one endpoint in $A$ and the other endpoint in $B$. The width of a partition is the maximum number of vertices in a bag. … If a forest $T$ is a partition of a graph $G$, then $T$ is a tree-partition of $G$. The tree-partition-width of $G$ … is the minimum width of a tree-partition of $G$.
- page 2 : tree-partition-width upper bounds treewidth by a linear function – $2twp(G) \ge tw(G)+1$
- page 2 : degree treewidth upper bounds tree-partition-width by a computable function and lower bounds it by a polynomial function – $twp(G) \le 24tw(G)\Delta(G)$
- page 2 : degree treewidth upper bounds tree-partition-width by a computable function and lower bounds it by a polynomial function – Theorem 1. … $twp(G) < \frac 52 (tw(G)+1)(\frac 72 \Delta-1)$
- page 2 : degree treewidth upper bounds tree-partition-width by a computable function and lower bounds it by a polynomial function – Theorem 2. … there is a chordal graph $G$ … $twp(G) \ge (\frac 18 - \epsilon)tw(G)\Delta(G).$
- assumed
- tree-partition-width is equivalent to tree-partition-width – assumed
- unknown source
- tree-cut width upper bounds tree-partition-width by a computable function
- edge-treewidth upper bounds tree-partition-width by a computable function