tree-partition-width
tags: tree decomposition
Definition: see On tree-partition-width by Wood
Relations
Other | Relation from | Relation to | |
---|---|---|---|
acyclic chromatic number | ■ | exclusion | upper bound |
admissibility | ■ | exclusion | upper bound |
arboricity | ■ | exclusion | upper bound |
average degree | ■ | exclusion | upper bound |
average distance | ■ | exclusion | exclusion |
bandwidth | ■ | upper bound | exclusion |
bipartite | ■ | unbounded | exclusion |
bipartite number | ■ | exclusion | exclusion |
bisection bandwidth | ■ | exclusion | exclusion |
block | ■ | unbounded | exclusion |
book thickness | ■ | exclusion | upper bound |
boolean width | ■ | exclusion | upper bound |
bounded components | ■ | upper bound | exclusion |
bounded expansion | ■ | exclusion | upper bound |
boxicity | ■ | exclusion | upper bound |
branch width | ■ | exclusion | upper bound |
c-closure | ■ | exclusion | unknown to HOPS |
carving-width | ■ | upper bound | exclusion |
chi-bounded | ■ | exclusion | upper bound |
chordal | ■ | unbounded | exclusion |
chordality | ■ | exclusion | upper bound |
chromatic number | ■ | exclusion | upper bound |
clique cover number | ■ | exclusion | exclusion |
clique-tree-width | ■ | exclusion | upper bound |
clique-width | ■ | exclusion | upper bound |
cluster | ■ | unbounded | exclusion |
co-cluster | ■ | unbounded | exclusion |
cograph | ■ | unbounded | exclusion |
complete | ■ | unbounded | exclusion |
connected | ■ | exclusion | avoids |
contraction complexity | ■ | upper bound | exclusion |
cutwidth | ■ | upper bound | exclusion |
cycle | ■ | upper bound | exclusion |
cycles | ■ | upper bound | exclusion |
d-admissibility | ■ | exclusion | upper bound |
d-path-free | ■ | unknown to HOPS | exclusion |
degeneracy | ■ | exclusion | upper bound |
degree treewidth | ■ | non-tight bounds | exclusion |
diameter | ■ | exclusion | exclusion |
diameter+max degree | ■ | upper bound | exclusion |
distance to bipartite | ■ | exclusion | exclusion |
distance to block | ■ | exclusion | exclusion |
distance to bounded components | ■ | unknown to HOPS | exclusion |
distance to chordal | ■ | exclusion | exclusion |
distance to cluster | ■ | exclusion | exclusion |
distance to co-cluster | ■ | exclusion | exclusion |
distance to cograph | ■ | exclusion | exclusion |
distance to complete | ■ | exclusion | exclusion |
distance to edgeless | ■ | unknown to HOPS | exclusion |
distance to forest | ■ | unknown to HOPS | exclusion |
distance to interval | ■ | exclusion | exclusion |
distance to linear forest | ■ | unknown to HOPS | exclusion |
distance to maximum degree | ■ | exclusion | exclusion |
distance to outerplanar | ■ | unknown to HOPS | exclusion |
distance to perfect | ■ | exclusion | exclusion |
distance to planar | ■ | exclusion | exclusion |
distance to stars | ■ | unknown to HOPS | exclusion |
domatic number | ■ | exclusion | upper bound |
domination number | ■ | exclusion | exclusion |
domino treewidth | ■ | upper bound | exclusion |
edge clique cover number | ■ | exclusion | exclusion |
edge connectivity | ■ | exclusion | upper bound |
edge-cut width | ■ | upper bound | unknown to HOPS |
edge-treewidth | ■ | upper bound | unknown to HOPS |
edgeless | ■ | upper bound | avoids |
excluded minor | ■ | exclusion | unknown to HOPS |
excluded planar minor | ■ | unknown to HOPS | unknown to HOPS |
excluded top-minor | ■ | exclusion | upper bound |
feedback edge set | ■ | upper bound | exclusion |
feedback vertex set | ■ | unknown to HOPS | exclusion |
flip-width | ■ | exclusion | upper bound |
forest | ■ | upper bound | exclusion |
genus | ■ | exclusion | exclusion |
grid | ■ | unbounded | exclusion |
h-index | ■ | exclusion | exclusion |
interval | ■ | unbounded | exclusion |
iterated type partitions | ■ | exclusion | exclusion |
linear clique-width | ■ | exclusion | unknown to HOPS |
linear forest | ■ | upper bound | exclusion |
linear NLC-width | ■ | exclusion | unknown to HOPS |
linear rank-width | ■ | exclusion | unknown to HOPS |
maximum clique | ■ | exclusion | upper bound |
maximum degree | ■ | exclusion | exclusion |
maximum independent set | ■ | exclusion | exclusion |
maximum induced matching | ■ | exclusion | exclusion |
maximum leaf number | ■ | upper bound | exclusion |
maximum matching | ■ | unknown to HOPS | exclusion |
maximum matching on bipartite graphs | ■ | unknown to HOPS | exclusion |
merge-width | ■ | exclusion | upper bound |
mim-width | ■ | exclusion | upper bound |
minimum degree | ■ | exclusion | upper bound |
mm-width | ■ | exclusion | upper bound |
modular-width | ■ | exclusion | exclusion |
module-width | ■ | exclusion | upper bound |
monadically dependent | ■ | exclusion | upper bound |
monadically stable | ■ | exclusion | upper bound |
neighborhood diversity | ■ | exclusion | exclusion |
NLC-width | ■ | exclusion | upper bound |
NLCT-width | ■ | exclusion | upper bound |
nowhere dense | ■ | exclusion | upper bound |
odd cycle transversal | ■ | exclusion | exclusion |
outerplanar | ■ | unknown to HOPS | exclusion |
overlap treewidth | ■ | unknown to HOPS | unknown to HOPS |
path | ■ | upper bound | exclusion |
pathwidth | ■ | unknown to HOPS | exclusion |
pathwidth+maxdegree | ■ | upper bound | exclusion |
perfect | ■ | unbounded | exclusion |
planar | ■ | unbounded | exclusion |
radius-inf flip-width | ■ | exclusion | upper bound |
radius-r flip-width | ■ | exclusion | upper bound |
rank-width | ■ | exclusion | upper bound |
series-parallel | ■ | unknown to HOPS | unknown to HOPS |
shrub-depth | ■ | exclusion | unknown to HOPS |
sim-width | ■ | exclusion | upper bound |
size | ■ | upper bound | exclusion |
slim tree-cut width | ■ | upper bound | unknown to HOPS |
sparse twin-width | ■ | exclusion | upper bound |
star | ■ | upper bound | exclusion |
stars | ■ | upper bound | exclusion |
strong coloring number | ■ | exclusion | upper bound |
strong d-coloring number | ■ | exclusion | upper bound |
strong inf-coloring number | ■ | exclusion | upper bound |
topological bandwidth | ■ | unknown to HOPS | exclusion |
tree | ■ | upper bound | exclusion |
tree-cut width | ■ | upper bound | unknown to HOPS |
tree-independence number | ■ | exclusion | upper bound |
tree-partition-width | ■ | equal | equal |
treebandwidth | ■ | exclusion | upper bound |
treedepth | ■ | unknown to HOPS | exclusion |
treelength | ■ | exclusion | unknown to HOPS |
treespan | ■ | upper bound | exclusion |
treewidth | ■ | exclusion | upper bound |
twin-cover number | ■ | exclusion | exclusion |
twin-width | ■ | exclusion | upper bound |
vertex connectivity | ■ | unknown to HOPS | unknown to HOPS |
vertex cover | ■ | unknown to HOPS | exclusion |
vertex integrity | ■ | unknown to HOPS | exclusion |
weak coloring number | ■ | exclusion | upper bound |
weak d-coloring number | ■ | exclusion | upper bound |
weak inf-coloring number | ■ | unknown to HOPS | exclusion |
weakly sparse | ■ | exclusion | upper bound |
weakly sparse and merge width | ■ | exclusion | upper bound |
Results
- 2025 On a tree-based variant of bandwidth and forbidding simple topological minors by Jacob, Lochet, Paul
- page 7 : tree-partition-width upper bounds treebandwidth by a linear function – By rooting the tree-partition arbitrarily and replacing each bag by an arbitrary linear ordering of its vertices one derives ${\rm tbw}(G) \le 2 \cdot {\rm tpw}(G)$. However, some graphs of treebandwidth 2 have unbounded tree-partition-width: …
- page 7 : graph classes with bounded treebandwidth are not bounded tree-partition-width – By rooting the tree-partition arbitrarily and replacing each bag by an arbitrary linear ordering of its vertices one derives ${\rm tbw}(G) \le 2 \cdot {\rm tpw}(G)$. However, some graphs of treebandwidth 2 have unbounded tree-partition-width: …
- 2009 On tree-partition-width by Wood
- page 1 : tree-partition-width – A graph $H$ is a partition of a graph $G$ if: each vertex of $H$ is a set of vertices of $G$ (called a bag), every evrtex of $G$ is in exactly one bag of $H$, and distinct bags $A$ and $B$ are adjacent in $H$ if and only if there is an edge of $G$ with one endpoint in $A$ and the other endpoint in $B$. The width of a partition is the maximum number of vertices in a bag. … If a forest $T$ is a partition of a graph $G$, then $T$ is a tree-partition of $G$. The tree-partition-width of $G$ … is the minimum width of a tree-partition of $G$.
- page 2 : tree-partition-width upper bounds treewidth by a linear function – $2twp(G) \ge tw(G)+1$
- page 2 : degree treewidth upper bounds tree-partition-width by a computable function and lower bounds it by a polynomial function – $twp(G) \le 24tw(G)\Delta(G)$
- page 2 : degree treewidth upper bounds tree-partition-width by a computable function and lower bounds it by a polynomial function – Theorem 1. … $twp(G) < \frac 52 (tw(G)+1)(\frac 72 \Delta-1)$
- page 2 : degree treewidth upper bounds tree-partition-width by a computable function and lower bounds it by a polynomial function – Theorem 2. … there is a chordal graph $G$ … $twp(G) \ge (\frac 18 - \epsilon)tw(G)\Delta(G).$
- assumed
- tree-partition-width is equivalent to tree-partition-width – assumed
- unknown source
- tree-cut width upper bounds tree-partition-width by a computable function
- edge-treewidth upper bounds tree-partition-width by a computable function