treebandwidth
Definition: A \emph{tree-layout} of $G=(V,E)$ is a rooted tree $T$ whose nodes are the vertices of $V$, and such that, for every edge $xy \in E$, $x$ is an ancestor of $y$ or vice-versa. The bandwidth of $T$ is then the maximum distance in $T$ between pairs of neighbors in $G$. We call \emph{treebandwidth} of $G$, the minimum bandwidth over tree-layouts of $G$, and denote it by ${\rm tbw}(G)$.
Relations
| Other | Relation from | Relation to | |
|---|---|---|---|
| acyclic chromatic number | ■ | exclusion | upper bound |
| admissibility | ■ | exclusion | upper bound |
| arboricity | ■ | exclusion | upper bound |
| average degree | ■ | exclusion | upper bound |
| average distance | ■ | exclusion | exclusion |
| bandwidth | ■ | upper bound | exclusion |
| bipartite | ■ | unbounded | exclusion |
| bipartite number | ■ | exclusion | exclusion |
| bisection bandwidth | ■ | exclusion | exclusion |
| block | ■ | unbounded | exclusion |
| book thickness | ■ | exclusion | upper bound |
| boolean width | ■ | exclusion | upper bound |
| bounded components | ■ | upper bound | exclusion |
| bounded expansion | ■ | exclusion | upper bound |
| boxicity | ■ | exclusion | upper bound |
| branch width | ■ | unknown to HOPS | upper bound |
| c-closure | ■ | exclusion | unknown to HOPS |
| carving-width | ■ | upper bound | exclusion |
| chi-bounded | ■ | exclusion | upper bound |
| chordal | ■ | unbounded | exclusion |
| chordality | ■ | exclusion | upper bound |
| chromatic number | ■ | exclusion | upper bound |
| clique cover number | ■ | exclusion | exclusion |
| clique-tree-width | ■ | exclusion | upper bound |
| clique-width | ■ | exclusion | upper bound |
| cluster | ■ | unbounded | exclusion |
| co-cluster | ■ | unbounded | exclusion |
| cograph | ■ | unbounded | exclusion |
| complete | ■ | unbounded | exclusion |
| connected | ■ | exclusion | avoids |
| contraction complexity | ■ | upper bound | exclusion |
| cutwidth | ■ | upper bound | exclusion |
| cycle | ■ | upper bound | exclusion |
| cycles | ■ | upper bound | exclusion |
| d-admissibility | ■ | exclusion | upper bound |
| d-path-free | ■ | unknown to HOPS | exclusion |
| degeneracy | ■ | exclusion | upper bound |
| degree treewidth | ■ | upper bound | exclusion |
| diameter | ■ | exclusion | exclusion |
| diameter+max degree | ■ | upper bound | exclusion |
| distance to bipartite | ■ | exclusion | exclusion |
| distance to block | ■ | exclusion | exclusion |
| distance to bounded components | ■ | unknown to HOPS | exclusion |
| distance to chordal | ■ | exclusion | exclusion |
| distance to cluster | ■ | exclusion | exclusion |
| distance to co-cluster | ■ | exclusion | exclusion |
| distance to cograph | ■ | exclusion | exclusion |
| distance to complete | ■ | exclusion | exclusion |
| distance to edgeless | ■ | unknown to HOPS | exclusion |
| distance to forest | ■ | unknown to HOPS | exclusion |
| distance to interval | ■ | exclusion | exclusion |
| distance to linear forest | ■ | unknown to HOPS | exclusion |
| distance to maximum degree | ■ | exclusion | exclusion |
| distance to outerplanar | ■ | unknown to HOPS | exclusion |
| distance to perfect | ■ | exclusion | exclusion |
| distance to planar | ■ | exclusion | exclusion |
| distance to stars | ■ | unknown to HOPS | exclusion |
| domatic number | ■ | exclusion | upper bound |
| domination number | ■ | exclusion | exclusion |
| domino treewidth | ■ | upper bound | exclusion |
| edge clique cover number | ■ | exclusion | exclusion |
| edge connectivity | ■ | exclusion | upper bound |
| edge-cut width | ■ | upper bound | exclusion |
| edge-treewidth | ■ | upper bound | exclusion |
| edgeless | ■ | upper bound | avoids |
| excluded minor | ■ | exclusion | unknown to HOPS |
| excluded planar minor | ■ | unknown to HOPS | unknown to HOPS |
| excluded top-minor | ■ | exclusion | upper bound |
| feedback edge set | ■ | upper bound | exclusion |
| feedback vertex set | ■ | unknown to HOPS | exclusion |
| flip-width | ■ | exclusion | upper bound |
| forest | ■ | upper bound | exclusion |
| genus | ■ | exclusion | exclusion |
| grid | ■ | unbounded | exclusion |
| h-index | ■ | exclusion | exclusion |
| interval | ■ | unbounded | exclusion |
| iterated type partitions | ■ | exclusion | exclusion |
| linear clique-width | ■ | exclusion | unknown to HOPS |
| linear forest | ■ | upper bound | exclusion |
| linear NLC-width | ■ | exclusion | unknown to HOPS |
| linear rank-width | ■ | exclusion | unknown to HOPS |
| maximum clique | ■ | exclusion | upper bound |
| maximum degree | ■ | exclusion | exclusion |
| maximum independent set | ■ | exclusion | exclusion |
| maximum induced matching | ■ | exclusion | exclusion |
| maximum leaf number | ■ | upper bound | exclusion |
| maximum matching | ■ | unknown to HOPS | exclusion |
| maximum matching on bipartite graphs | ■ | unknown to HOPS | exclusion |
| merge-width | ■ | exclusion | upper bound |
| mim-width | ■ | exclusion | upper bound |
| minimum degree | ■ | exclusion | upper bound |
| mm-width | ■ | unknown to HOPS | upper bound |
| modular-width | ■ | exclusion | exclusion |
| module-width | ■ | exclusion | upper bound |
| monadically dependent | ■ | exclusion | upper bound |
| monadically stable | ■ | exclusion | upper bound |
| neighborhood diversity | ■ | exclusion | exclusion |
| NLC-width | ■ | exclusion | upper bound |
| NLCT-width | ■ | exclusion | upper bound |
| nowhere dense | ■ | exclusion | upper bound |
| odd cycle transversal | ■ | exclusion | exclusion |
| outerplanar | ■ | unknown to HOPS | exclusion |
| overlap treewidth | ■ | unknown to HOPS | unknown to HOPS |
| path | ■ | upper bound | exclusion |
| pathwidth | ■ | unknown to HOPS | exclusion |
| pathwidth+maxdegree | ■ | upper bound | exclusion |
| perfect | ■ | unbounded | exclusion |
| planar | ■ | unbounded | exclusion |
| radius-inf flip-width | ■ | exclusion | upper bound |
| radius-r flip-width | ■ | exclusion | upper bound |
| rank-width | ■ | exclusion | upper bound |
| series-parallel | ■ | unknown to HOPS | unknown to HOPS |
| shrub-depth | ■ | exclusion | unknown to HOPS |
| sim-width | ■ | exclusion | upper bound |
| size | ■ | upper bound | exclusion |
| slim tree-cut width | ■ | upper bound | exclusion |
| sparse twin-width | ■ | exclusion | upper bound |
| star | ■ | upper bound | exclusion |
| stars | ■ | upper bound | exclusion |
| strong coloring number | ■ | exclusion | upper bound |
| strong d-coloring number | ■ | exclusion | upper bound |
| strong inf-coloring number | ■ | unknown to HOPS | upper bound |
| topological bandwidth | ■ | unknown to HOPS | exclusion |
| tree | ■ | upper bound | exclusion |
| tree-cut width | ■ | upper bound | exclusion |
| tree-independence number | ■ | exclusion | upper bound |
| tree-partition-width | ■ | upper bound | exclusion |
| treebandwidth | ■ | equal | equal |
| treedepth | ■ | unknown to HOPS | exclusion |
| treelength | ■ | exclusion | unknown to HOPS |
| treespan | ■ | upper bound | exclusion |
| treewidth | ■ | unknown to HOPS | upper bound |
| twin-cover number | ■ | exclusion | exclusion |
| twin-width | ■ | exclusion | upper bound |
| vertex connectivity | ■ | unknown to HOPS | unknown to HOPS |
| vertex cover | ■ | unknown to HOPS | exclusion |
| vertex integrity | ■ | unknown to HOPS | exclusion |
| weak coloring number | ■ | exclusion | upper bound |
| weak d-coloring number | ■ | exclusion | upper bound |
| weak inf-coloring number | ■ | unknown to HOPS | exclusion |
| weakly sparse | ■ | exclusion | upper bound |
| weakly sparse and merge width | ■ | exclusion | upper bound |
Results
- 2025 On a tree-based variant of bandwidth and forbidding simple topological minors by Jacob, Lochet, Paul
- page 1 : treebandwidth – A \emph{tree-layout} of $G=(V,E)$ is a rooted tree $T$ whose nodes are the vertices of $V$, and such that, for every edge $xy \in E$, $x$ is an ancestor of $y$ or vice-versa. The bandwidth of $T$ is then the maximum distance in $T$ between pairs of neighbors in $G$. We call \emph{treebandwidth} of $G$, the minimum bandwidth over tree-layouts of $G$, and denote it by ${\rm tbw}(G)$.
- page 7 : tree-partition-width upper bounds treebandwidth by a linear function – By rooting the tree-partition arbitrarily and replacing each bag by an arbitrary linear ordering of its vertices one derives ${\rm tbw}(G) \le 2 \cdot {\rm tpw}(G)$. However, some graphs of treebandwidth 2 have unbounded tree-partition-width: …
- page 7 : graph classes with bounded treebandwidth are not bounded tree-partition-width – By rooting the tree-partition arbitrarily and replacing each bag by an arbitrary linear ordering of its vertices one derives ${\rm tbw}(G) \le 2 \cdot {\rm tpw}(G)$. However, some graphs of treebandwidth 2 have unbounded tree-partition-width: …
- page 38 : treebandwidth upper bounds treewidth by a computable function – [implied through obstructions]
- assumed
- treebandwidth is equivalent to treebandwidth – assumed