twin-width
abbr: tww
Relations
Other | Relation from | Relation to | |
---|---|---|---|
acyclic chromatic number | ■ | exclusion | exclusion |
arboricity | ■ | exclusion | exclusion |
average degree | ■ | exclusion | exclusion |
average distance | ■ | exclusion | exclusion |
bandwidth | ■ | upper bound | exclusion |
bipartite | ■ | unknown to HOPS | exclusion |
bipartite number | ■ | exclusion | unknown to HOPS |
bisection bandwidth | ■ | exclusion | exclusion |
block | ■ | unknown to HOPS | exclusion |
book thickness | ■ | unknown to HOPS | exclusion |
boolean width | ■ | upper bound | exclusion |
bounded components | ■ | upper bound | exclusion |
boxicity | ■ | exclusion | exclusion |
branch width | ■ | upper bound | exclusion |
c-closure | ■ | exclusion | exclusion |
carving-width | ■ | upper bound | exclusion |
chordal | ■ | unknown to HOPS | exclusion |
chordality | ■ | exclusion | exclusion |
chromatic number | ■ | exclusion | exclusion |
clique cover number | ■ | exclusion | exclusion |
clique-tree-width | ■ | upper bound | exclusion |
clique-width | ■ | upper bound | exclusion |
cluster | ■ | upper bound | exclusion |
co-cluster | ■ | upper bound | exclusion |
cograph | ■ | upper bound | exclusion |
complete | ■ | upper bound | exclusion |
connected | ■ | unknown to HOPS | exclusion |
contraction complexity | ■ | upper bound | exclusion |
cutwidth | ■ | upper bound | exclusion |
cycle | ■ | upper bound | exclusion |
cycles | ■ | upper bound | exclusion |
d-path-free | ■ | upper bound | exclusion |
degeneracy | ■ | exclusion | exclusion |
degree treewidth | ■ | upper bound | exclusion |
diameter | ■ | exclusion | exclusion |
diameter+max degree | ■ | upper bound | exclusion |
disconnected | ■ | unknown to HOPS | exclusion |
disjoint cycles | ■ | upper bound | exclusion |
distance to bipartite | ■ | exclusion | exclusion |
distance to block | ■ | unknown to HOPS | exclusion |
distance to bounded components | ■ | upper bound | exclusion |
distance to chordal | ■ | exclusion | exclusion |
distance to cluster | ■ | upper bound | exclusion |
distance to co-cluster | ■ | upper bound | exclusion |
distance to cograph | ■ | upper bound | exclusion |
distance to complete | ■ | upper bound | exclusion |
distance to disconnected | ■ | exclusion | exclusion |
distance to edgeless | ■ | upper bound | exclusion |
distance to forest | ■ | upper bound | exclusion |
distance to interval | ■ | exclusion | exclusion |
distance to linear forest | ■ | upper bound | exclusion |
distance to maximum degree | ■ | exclusion | exclusion |
distance to outerplanar | ■ | upper bound | exclusion |
distance to perfect | ■ | exclusion | exclusion |
distance to planar | ■ | upper bound | exclusion |
distance to stars | ■ | upper bound | exclusion |
domatic number | ■ | exclusion | exclusion |
domination number | ■ | exclusion | exclusion |
edge clique cover number | ■ | upper bound | exclusion |
edge connectivity | ■ | exclusion | exclusion |
edgeless | ■ | upper bound | exclusion |
feedback edge set | ■ | upper bound | exclusion |
feedback vertex set | ■ | upper bound | exclusion |
forest | ■ | upper bound | exclusion |
genus | ■ | upper bound | exclusion |
girth | ■ | exclusion | exclusion |
grid | ■ | upper bound | exclusion |
h-index | ■ | exclusion | exclusion |
inf-flip-width | ■ | upper bound | exclusion |
interval | ■ | unknown to HOPS | exclusion |
iterated type partitions | ■ | upper bound | exclusion |
linear clique-width | ■ | upper bound | exclusion |
linear forest | ■ | upper bound | exclusion |
linear NLC-width | ■ | upper bound | exclusion |
linear rank-width | ■ | upper bound | exclusion |
maximum clique | ■ | exclusion | exclusion |
maximum degree | ■ | exclusion | exclusion |
maximum independent set | ■ | exclusion | exclusion |
maximum induced matching | ■ | exclusion | exclusion |
maximum leaf number | ■ | upper bound | exclusion |
maximum matching | ■ | upper bound | exclusion |
maximum matching on bipartite graphs | ■ | upper bound | exclusion |
mim-width | ■ | unknown to HOPS | unknown to HOPS |
minimum degree | ■ | exclusion | exclusion |
mm-width | ■ | upper bound | exclusion |
modular-width | ■ | upper bound | exclusion |
module-width | ■ | upper bound | exclusion |
neighborhood diversity | ■ | upper bound | exclusion |
NLC-width | ■ | upper bound | exclusion |
NLCT-width | ■ | upper bound | exclusion |
odd cycle transversal | ■ | exclusion | exclusion |
outerplanar | ■ | upper bound | exclusion |
path | ■ | upper bound | exclusion |
pathwidth | ■ | upper bound | exclusion |
pathwidth+maxdegree | ■ | upper bound | exclusion |
perfect | ■ | unknown to HOPS | exclusion |
planar | ■ | upper bound | exclusion |
radius-r flip-width | ■ | unknown to HOPS | upper bound |
rank-width | ■ | upper bound | exclusion |
shrub-depth | ■ | upper bound | exclusion |
sim-width | ■ | unknown to HOPS | unknown to HOPS |
size | ■ | upper bound | exclusion |
star | ■ | upper bound | exclusion |
stars | ■ | upper bound | exclusion |
topological bandwidth | ■ | upper bound | exclusion |
tree | ■ | upper bound | exclusion |
tree-independence number | ■ | unknown to HOPS | unknown to HOPS |
treedepth | ■ | upper bound | exclusion |
treelength | ■ | exclusion | unknown to HOPS |
treewidth | ■ | upper bound | exclusion |
twin-cover number | ■ | upper bound | exclusion |
twin-width | ■ | equal | equal |
vertex connectivity | ■ | exclusion | exclusion |
vertex cover | ■ | upper bound | exclusion |
vertex integrity | ■ | upper bound | exclusion |
Results
- 2024 Twin-width of graphs on surfaces by Kráľ, Pekárková, Štorgel
- page 18 : genus upper bounds twin-width by a linear function – The twin-width of every graph $G$ of Euler genus $g \ge 1$ is at most … $18 \sqrt{47g}+O(1)$.
- 2023 Flip-width: Cops and Robber on dense graphs by Toruńczyk
- twin-width upper bounds radius-r flip-width by an exponential function – Theorem 7.1. Fix $r \in \mathbb N$. For every graph $G$ of twin-width $d$ we have: $\mathrm{fw}_r(G) \le 2^d \cdot d^{O(r)}$.
- 2022 Expanding the Graph Parameter Hierarchy by Tran
- page 36 : clique-width upper bounds twin-width by a tower function – Proposition 6.2. Clique-width strictly upper bounds Twin-width.
- page 36 : bounded twin-width does not imply bounded clique-width – Proposition 6.2. Clique-width strictly upper bounds Twin-width.
- page 37 : genus upper bounds twin-width by a linear function – Proposition 6.3. Genus strictly upper bounds Twin-width.
- page 37 : bounded twin-width does not imply bounded genus – Proposition 6.3. Genus strictly upper bounds Twin-width.
- page 37 : distance to planar upper bounds twin-width by an exponential function – Theorem 6.4. Distance to Planar strictly upper bounds Twin-width.
- page 37 : bounded twin-width does not imply bounded distance to planar – Theorem 6.4. Distance to Planar strictly upper bounds Twin-width.
- page 38 : bounded twin-width does not imply bounded distance to interval – Observation 6.5. Twin-width is incomparable to Distance to Interval.
- page 38 : bounded distance to interval does not imply bounded twin-width – Observation 6.5. Twin-width is incomparable to Distance to Interval.
- page 38 : bounded twin-width does not imply bounded distance to bipartite – Proposition 6.6. Twin-width is incomparable to Distance to Bipartite.
- page 38 : bounded distance to bipartite does not imply bounded twin-width – Proposition 6.6. Twin-width is incomparable to Distance to Bipartite.
- page 40 : bounded twin-width does not imply bounded clique cover number – Proposition 6.7. Twin-width is incomparable to Clique Cover Number.
- page 40 : bounded clique cover number does not imply bounded twin-width – Proposition 6.7. Twin-width is incomparable to Clique Cover Number.
- page 40 : bounded twin-width does not imply bounded maximum degree – Proposition 6.8. Twin-width is incomparable to Maximum Degree.
- page 40 : bounded maximum degree does not imply bounded twin-width – Proposition 6.8. Twin-width is incomparable to Maximum Degree.
- page 40 : bounded twin-width does not imply bounded bisection bandwidth – Observation 6.9. Twin-width is incomparable to Bisection Width.
- page 40 : bounded bisection bandwidth does not imply bounded twin-width – Observation 6.9. Twin-width is incomparable to Bisection Width.
- 2021 Twin-width I: Tractable
FO
Model Checking by Bonnet, Kim, Thomassé, Watrigant- page 2 : twin-width – … we consider a sequence of graphs $G_n,G_{n-1},\dots,G_2,G_1$, where $G_n$ is the original graph $G$, $G_1$ is the one-vertex graph, $G_i$ has $i$ vertices, and $G_{i-1}$ is obtained from $G_i$ by performing a single contraction of two (non-necessarily adjacent) vertices. For every vertex $u \in V(G_i)$, let us denote by $u(G)$ the vertices of $G$ which have been contracted to $u$ along the sequence $G_n,\dots,G_i$. A pair of disjoint sets of vertices is \emph{homogeneous} if, between these sets, there are either all possible edges or no edge at all. The red edges … consist of all pairs $uv$ of vertices of $G_i$ such that $u(G)$ and $v(G)$ are not homogeneous in $G$. If the red degree of every $G_i$ is at most $d$, then $G_n,G_{n-1},\dots,G_2,G_1$ is called a \emph{sequence of $d$-contractions}, or \emph{$d$-sequence}. The twin-width of $G$ is the minimum $d$ for which there exists a sequence of $d$-contractions.
- page 14 : boolean width upper bounds twin-width by an exponential function – Theorem 3: Every graph with boolean-width $k$ has twin-width at most $2^{k+1}-1$.
- page 15 : grid upper bounds twin-width by a constant – Theorem 4.3. For every positive integers $d$ and $n$, the $d$-dimensional $n$-grid has twin-width at most $3d$.
- unknown source
- clique-width upper bounds twin-width by a tower function
- assumed
- twin-width is equivalent to twin-width – assumed