twwsurfaces2024
@misc{twwsurfaces2024,
archiveprefix = {arXiv},
author = {Daniel Kráľ and Kristýna Pekárková and Kenny Štorgel},
eprint = {2307.05811},
primaryclass = {math.CO},
title = {Twin-width of graphs on surfaces},
url = {https://arxiv.org/abs/2307.05811},
year = {2024},
}
- page 18 : genus upper bounds twin-width by a linear function – The twin-width of every graph $G$ of Euler genus $g \ge 1$ is at most … $18 \sqrt{47g}+O(1)$.