genus
tags: topology
providers: ISGCI
Definition: Genus is the minimum integer $k$ such that the graph can be embedded on a surface with $k$ handles without edge crossings.
Relations
| Other | Relation from | Relation to | |
|---|---|---|---|
| acyclic chromatic number | ■ | exclusion | upper bound |
| admissibility | ■ | exclusion | upper bound |
| arboricity | ■ | exclusion | upper bound |
| average degree | ■ | exclusion | upper bound |
| average distance | ■ | exclusion | exclusion |
| bandwidth | ■ | exclusion | exclusion |
| bipartite | ■ | unbounded | exclusion |
| bipartite number | ■ | exclusion | exclusion |
| bisection bandwidth | ■ | exclusion | exclusion |
| block | ■ | unbounded | exclusion |
| book thickness | ■ | exclusion | upper bound |
| boolean width | ■ | exclusion | exclusion |
| bounded components | ■ | unknown to HOPS | exclusion |
| bounded expansion | ■ | exclusion | upper bound |
| boxicity | ■ | exclusion | upper bound |
| branch width | ■ | exclusion | exclusion |
| c-closure | ■ | exclusion | exclusion |
| carving-width | ■ | exclusion | exclusion |
| chi-bounded | ■ | exclusion | unknown to HOPS |
| chordal | ■ | unbounded | exclusion |
| chordality | ■ | exclusion | upper bound |
| chromatic number | ■ | exclusion | upper bound |
| clique cover number | ■ | exclusion | exclusion |
| clique-tree-width | ■ | exclusion | exclusion |
| clique-width | ■ | exclusion | exclusion |
| cluster | ■ | unbounded | exclusion |
| co-cluster | ■ | unbounded | exclusion |
| cograph | ■ | unbounded | exclusion |
| complete | ■ | unbounded | exclusion |
| connected | ■ | exclusion | avoids |
| contraction complexity | ■ | exclusion | exclusion |
| cutwidth | ■ | exclusion | exclusion |
| cycle | ■ | upper bound | exclusion |
| cycles | ■ | unknown to HOPS | exclusion |
| d-admissibility | ■ | exclusion | upper bound |
| d-path-free | ■ | exclusion | exclusion |
| degeneracy | ■ | exclusion | upper bound |
| degree treewidth | ■ | exclusion | exclusion |
| diameter | ■ | exclusion | exclusion |
| diameter+max degree | ■ | unknown to HOPS | exclusion |
| distance to bipartite | ■ | exclusion | exclusion |
| distance to block | ■ | exclusion | exclusion |
| distance to bounded components | ■ | exclusion | exclusion |
| distance to chordal | ■ | exclusion | exclusion |
| distance to cluster | ■ | exclusion | exclusion |
| distance to co-cluster | ■ | exclusion | exclusion |
| distance to cograph | ■ | exclusion | exclusion |
| distance to complete | ■ | exclusion | exclusion |
| distance to edgeless | ■ | exclusion | exclusion |
| distance to forest | ■ | exclusion | exclusion |
| distance to interval | ■ | exclusion | exclusion |
| distance to linear forest | ■ | exclusion | exclusion |
| distance to maximum degree | ■ | exclusion | exclusion |
| distance to outerplanar | ■ | exclusion | exclusion |
| distance to perfect | ■ | exclusion | exclusion |
| distance to planar | ■ | exclusion | exclusion |
| distance to stars | ■ | exclusion | exclusion |
| domatic number | ■ | exclusion | upper bound |
| domination number | ■ | exclusion | exclusion |
| domino treewidth | ■ | exclusion | exclusion |
| edge clique cover number | ■ | exclusion | exclusion |
| edge connectivity | ■ | exclusion | upper bound |
| edge-cut width | ■ | unknown to HOPS | exclusion |
| edge-treewidth | ■ | exclusion | exclusion |
| edgeless | ■ | upper bound | avoids |
| excluded minor | ■ | unknown to HOPS | upper bound |
| excluded planar minor | ■ | unknown to HOPS | avoids |
| excluded top-minor | ■ | exclusion | upper bound |
| feedback edge set | ■ | upper bound | exclusion |
| feedback vertex set | ■ | exclusion | exclusion |
| flip-width | ■ | exclusion | upper bound |
| forest | ■ | upper bound | exclusion |
| genus | ■ | equal | equal |
| grid | ■ | upper bound | exclusion |
| h-index | ■ | exclusion | exclusion |
| interval | ■ | unbounded | exclusion |
| iterated type partitions | ■ | exclusion | exclusion |
| linear clique-width | ■ | exclusion | exclusion |
| linear forest | ■ | upper bound | exclusion |
| linear NLC-width | ■ | exclusion | exclusion |
| linear rank-width | ■ | exclusion | exclusion |
| maximum clique | ■ | exclusion | upper bound |
| maximum degree | ■ | exclusion | exclusion |
| maximum independent set | ■ | exclusion | exclusion |
| maximum induced matching | ■ | exclusion | exclusion |
| maximum leaf number | ■ | upper bound | exclusion |
| maximum matching | ■ | exclusion | exclusion |
| maximum matching on bipartite graphs | ■ | unknown to HOPS | exclusion |
| merge-width | ■ | exclusion | upper bound |
| mim-width | ■ | exclusion | unknown to HOPS |
| minimum degree | ■ | exclusion | upper bound |
| mm-width | ■ | exclusion | exclusion |
| modular-width | ■ | exclusion | exclusion |
| module-width | ■ | exclusion | exclusion |
| monadically dependent | ■ | exclusion | upper bound |
| monadically stable | ■ | exclusion | upper bound |
| neighborhood diversity | ■ | exclusion | exclusion |
| NLC-width | ■ | exclusion | exclusion |
| NLCT-width | ■ | exclusion | exclusion |
| nowhere dense | ■ | exclusion | upper bound |
| odd cycle transversal | ■ | exclusion | exclusion |
| outerplanar | ■ | upper bound | exclusion |
| overlap treewidth | ■ | exclusion | exclusion |
| path | ■ | upper bound | exclusion |
| pathwidth | ■ | exclusion | exclusion |
| pathwidth+maxdegree | ■ | exclusion | exclusion |
| perfect | ■ | unbounded | exclusion |
| planar | ■ | upper bound | exclusion |
| radius-inf flip-width | ■ | exclusion | exclusion |
| radius-r flip-width | ■ | exclusion | upper bound |
| rank-width | ■ | exclusion | exclusion |
| series-parallel | ■ | unknown to HOPS | unknown to HOPS |
| shrub-depth | ■ | exclusion | exclusion |
| sim-width | ■ | exclusion | unknown to HOPS |
| size | ■ | upper bound | exclusion |
| slim tree-cut width | ■ | exclusion | exclusion |
| sparse twin-width | ■ | exclusion | upper bound |
| star | ■ | upper bound | exclusion |
| stars | ■ | upper bound | exclusion |
| strong coloring number | ■ | exclusion | upper bound |
| strong d-coloring number | ■ | exclusion | upper bound |
| strong inf-coloring number | ■ | exclusion | exclusion |
| topological bandwidth | ■ | exclusion | exclusion |
| tree | ■ | upper bound | exclusion |
| tree-cut width | ■ | exclusion | exclusion |
| tree-independence number | ■ | exclusion | unknown to HOPS |
| tree-partition-width | ■ | exclusion | exclusion |
| treebandwidth | ■ | exclusion | exclusion |
| treedepth | ■ | exclusion | exclusion |
| treelength | ■ | exclusion | unknown to HOPS |
| treespan | ■ | exclusion | exclusion |
| treewidth | ■ | exclusion | exclusion |
| twin-cover number | ■ | exclusion | exclusion |
| twin-width | ■ | exclusion | upper bound |
| vertex connectivity | ■ | unknown to HOPS | unknown to HOPS |
| vertex cover | ■ | exclusion | exclusion |
| vertex integrity | ■ | exclusion | exclusion |
| weak coloring number | ■ | exclusion | upper bound |
| weak d-coloring number | ■ | exclusion | upper bound |
| weak inf-coloring number | ■ | exclusion | exclusion |
| weakly sparse | ■ | exclusion | upper bound |
| weakly sparse and merge width | ■ | exclusion | upper bound |
Results
- 2024 Twin-width of graphs on surfaces by Kráľ, Pekárková, Štorgel
- page 18 : genus upper bounds twin-width by a linear function – The twin-width of every graph $G$ of Euler genus $g \ge 1$ is at most … $18 \sqrt{47g}+O(1)$.
- 2022 Expanding the Graph Parameter Hierarchy by Tran
- page 34 : graph classes with bounded c-closure are not bounded genus – Proposition 5.6. $c$-Closure is incomparable to Genus.
- page 34 : graph classes with bounded genus are not bounded c-closure – Proposition 5.6. $c$-Closure is incomparable to Genus.
- page 37 : genus upper bounds twin-width by a linear function – Proposition 6.3. Genus strictly upper bounds Twin-width.
- page 37 : graph classes with bounded twin-width are not bounded genus – Proposition 6.3. Genus strictly upper bounds Twin-width.
- 2019 The Graph Parameter Hierarchy by Sorge
- page 8 : genus upper bounds acyclic chromatic number by a linear function – Lemma 4.8 ([3]). The accylic chromatic number $\chi_a$ is upper bounded by the genus $g$. We have $\chi_a \le 4g+4$.
- page 10 : feedback edge set upper bounds genus by a linear function – Lemma 4.19. The feedback edge set number $f$ upper bounds the genus $g$. We have $g \le f$.
- 1994 Genus $g$ Graphs Have Pagenumber $O(\sqrt g)$ by Malitz
- page 24 : genus upper bounds book thickness by a linear function – Theorem 5.1. Genus $g$ graphs have pagenumber $O(\sqrt{g})$.
- assumed
- unknown source
- feedback edge set upper bounds genus by a linear function – Removing $k$ edges creates a forest that is embeddable into the plane. We now add one handle for each of the $k$ edges to get embedding into $k$-handle genus.
- planar upper bounds genus by a constant
- genus upper bounds chromatic number by a constant – in fact, bounded by square root
- genus upper bounds excluded minor by a computable function
- Comparing Graph Parameters by Schröder
- page 23 : graph classes with bounded genus are not bounded clique-width – Proposition 3.17
- page 24 : graph classes with bounded vertex cover are not bounded genus – Proposition 3.18
- page 26 : graph classes with bounded genus are not bounded distance to perfect – Proposition 3.24
- page 30 : graph classes with bounded bandwidth are not bounded genus – Proposition 3.27
- page 33 : graph classes with bounded genus are not bounded distance to planar – Proposition 3.34