maximum degree
providers: ISGCI
Definition: Maximum degree over graph’s vertices.
Relations
| Other | Relation from | Relation to | |
|---|---|---|---|
| acyclic chromatic number | ■ | exclusion | upper bound |
| admissibility | ■ | exclusion | upper bound |
| arboricity | ■ | exclusion | upper bound |
| average degree | ■ | exclusion | upper bound |
| average distance | ■ | exclusion | exclusion |
| bandwidth | ■ | upper bound | exclusion |
| bipartite | ■ | unbounded | exclusion |
| bipartite number | ■ | exclusion | exclusion |
| bisection bandwidth | ■ | exclusion | exclusion |
| block | ■ | unbounded | exclusion |
| book thickness | ■ | exclusion | unknown to HOPS |
| boolean width | ■ | exclusion | exclusion |
| bounded components | ■ | upper bound | exclusion |
| bounded expansion | ■ | exclusion | upper bound |
| boxicity | ■ | exclusion | upper bound |
| branch width | ■ | exclusion | exclusion |
| c-closure | ■ | exclusion | upper bound |
| carving-width | ■ | upper bound | exclusion |
| chi-bounded | ■ | exclusion | unknown to HOPS |
| chordal | ■ | unbounded | exclusion |
| chordality | ■ | exclusion | upper bound |
| chromatic number | ■ | exclusion | upper bound |
| clique cover number | ■ | exclusion | exclusion |
| clique-tree-width | ■ | exclusion | exclusion |
| clique-width | ■ | exclusion | exclusion |
| cluster | ■ | unbounded | exclusion |
| co-cluster | ■ | unbounded | exclusion |
| cograph | ■ | unbounded | exclusion |
| complete | ■ | unbounded | exclusion |
| connected | ■ | exclusion | avoids |
| contraction complexity | ■ | upper bound | exclusion |
| cutwidth | ■ | upper bound | exclusion |
| cycle | ■ | upper bound | exclusion |
| cycles | ■ | upper bound | exclusion |
| d-admissibility | ■ | exclusion | upper bound |
| d-path-free | ■ | exclusion | exclusion |
| degeneracy | ■ | exclusion | upper bound |
| degree treewidth | ■ | upper bound | exclusion |
| diameter | ■ | exclusion | exclusion |
| diameter+max degree | ■ | upper bound | exclusion |
| distance to bipartite | ■ | exclusion | exclusion |
| distance to block | ■ | exclusion | exclusion |
| distance to bounded components | ■ | exclusion | exclusion |
| distance to chordal | ■ | exclusion | exclusion |
| distance to cluster | ■ | exclusion | exclusion |
| distance to co-cluster | ■ | exclusion | exclusion |
| distance to cograph | ■ | exclusion | exclusion |
| distance to complete | ■ | exclusion | exclusion |
| distance to edgeless | ■ | exclusion | exclusion |
| distance to forest | ■ | exclusion | exclusion |
| distance to interval | ■ | exclusion | exclusion |
| distance to linear forest | ■ | exclusion | exclusion |
| distance to maximum degree | ■ | exclusion | upper bound |
| distance to outerplanar | ■ | exclusion | exclusion |
| distance to perfect | ■ | exclusion | exclusion |
| distance to planar | ■ | exclusion | exclusion |
| distance to stars | ■ | exclusion | exclusion |
| domatic number | ■ | exclusion | upper bound |
| domination number | ■ | exclusion | exclusion |
| domino treewidth | ■ | upper bound | exclusion |
| edge clique cover number | ■ | exclusion | exclusion |
| edge connectivity | ■ | exclusion | upper bound |
| edge-cut width | ■ | exclusion | exclusion |
| edge-treewidth | ■ | exclusion | exclusion |
| edgeless | ■ | upper bound | avoids |
| excluded minor | ■ | exclusion | unknown to HOPS |
| excluded planar minor | ■ | unknown to HOPS | avoids |
| excluded top-minor | ■ | exclusion | upper bound |
| feedback edge set | ■ | exclusion | exclusion |
| feedback vertex set | ■ | exclusion | exclusion |
| flip-width | ■ | exclusion | upper bound |
| forest | ■ | unbounded | exclusion |
| genus | ■ | exclusion | exclusion |
| grid | ■ | upper bound | exclusion |
| h-index | ■ | exclusion | upper bound |
| interval | ■ | unbounded | exclusion |
| iterated type partitions | ■ | exclusion | exclusion |
| linear clique-width | ■ | exclusion | exclusion |
| linear forest | ■ | upper bound | exclusion |
| linear NLC-width | ■ | exclusion | exclusion |
| linear rank-width | ■ | exclusion | exclusion |
| maximum clique | ■ | exclusion | upper bound |
| maximum degree | ■ | equal | equal |
| maximum independent set | ■ | exclusion | exclusion |
| maximum induced matching | ■ | exclusion | exclusion |
| maximum leaf number | ■ | upper bound | exclusion |
| maximum matching | ■ | exclusion | exclusion |
| maximum matching on bipartite graphs | ■ | exclusion | exclusion |
| merge-width | ■ | exclusion | upper bound |
| mim-width | ■ | exclusion | unknown to HOPS |
| minimum degree | ■ | exclusion | upper bound |
| mm-width | ■ | exclusion | exclusion |
| modular-width | ■ | exclusion | exclusion |
| module-width | ■ | exclusion | exclusion |
| monadically dependent | ■ | exclusion | upper bound |
| monadically stable | ■ | exclusion | upper bound |
| neighborhood diversity | ■ | exclusion | exclusion |
| NLC-width | ■ | exclusion | exclusion |
| NLCT-width | ■ | exclusion | exclusion |
| nowhere dense | ■ | exclusion | upper bound |
| odd cycle transversal | ■ | exclusion | exclusion |
| outerplanar | ■ | unknown to HOPS | exclusion |
| overlap treewidth | ■ | exclusion | exclusion |
| path | ■ | upper bound | exclusion |
| pathwidth | ■ | exclusion | exclusion |
| pathwidth+maxdegree | ■ | upper bound | exclusion |
| perfect | ■ | unbounded | exclusion |
| planar | ■ | unbounded | exclusion |
| radius-inf flip-width | ■ | exclusion | exclusion |
| radius-r flip-width | ■ | exclusion | unknown to HOPS |
| rank-width | ■ | exclusion | exclusion |
| series-parallel | ■ | unknown to HOPS | unknown to HOPS |
| shrub-depth | ■ | exclusion | exclusion |
| sim-width | ■ | exclusion | unknown to HOPS |
| size | ■ | upper bound | exclusion |
| slim tree-cut width | ■ | exclusion | exclusion |
| sparse twin-width | ■ | exclusion | exclusion |
| star | ■ | unbounded | exclusion |
| stars | ■ | unbounded | exclusion |
| strong coloring number | ■ | exclusion | upper bound |
| strong d-coloring number | ■ | exclusion | upper bound |
| strong inf-coloring number | ■ | exclusion | exclusion |
| topological bandwidth | ■ | unknown to HOPS | exclusion |
| tree | ■ | unbounded | exclusion |
| tree-cut width | ■ | exclusion | exclusion |
| tree-independence number | ■ | exclusion | unknown to HOPS |
| tree-partition-width | ■ | exclusion | exclusion |
| treebandwidth | ■ | exclusion | exclusion |
| treedepth | ■ | exclusion | exclusion |
| treelength | ■ | exclusion | unknown to HOPS |
| treespan | ■ | upper bound | exclusion |
| treewidth | ■ | exclusion | exclusion |
| twin-cover number | ■ | exclusion | exclusion |
| twin-width | ■ | exclusion | exclusion |
| vertex connectivity | ■ | exclusion | unknown to HOPS |
| vertex cover | ■ | exclusion | exclusion |
| vertex integrity | ■ | exclusion | exclusion |
| weak coloring number | ■ | exclusion | upper bound |
| weak d-coloring number | ■ | exclusion | upper bound |
| weak inf-coloring number | ■ | exclusion | exclusion |
| weakly sparse | ■ | exclusion | upper bound |
| weakly sparse and merge width | ■ | exclusion | upper bound |
Results
- 2022 Expanding the Graph Parameter Hierarchy by Tran
- page 32 : maximum degree upper bounds c-closure by a computable function – Proposition 5.1. Maximum Degree strictly upper bounds $c$-Closure.
- page 32 : graph classes with bounded c-closure are not bounded maximum degree – Proposition 5.1. Maximum Degree strictly upper bounds $c$-Closure.
- page 40 : graph classes with bounded twin-width are not bounded maximum degree – Proposition 6.8. Twin-width is incomparable to Maximum Degree.
- page 40 : graph classes with bounded maximum degree are not bounded twin-width – Proposition 6.8. Twin-width is incomparable to Maximum Degree.
- 2019 The Graph Parameter Hierarchy by Sorge
- page 8 : maximum degree upper bounds acyclic chromatic number by a polynomial function – Lemma 4.6 ([15]). The acyclic chromatic number $\chi_a$ is uppre bounded by the maximum degree $\Delta$ (for every graph with $\Delta > 4$). We have $\chi_a \le \Delta(\Delta-1)/2$.
- 2013 Characterizing graphs of small carving-width by Belmonte, van ’t Hof, Kamiński, Paulusma, Thilikos
- carving-width upper bounds maximum degree by a linear function – Observation 1. Let $G$ be a graph. Then $cw(G) \ge \Delta(G)$.
- 2010 Comparing 17 graph parameters by Sasák
- page 28 : cutwidth upper bounds maximum degree by a linear function – Lemma 2.18. For any graph $G$ and any vertex $v \in V(G), cutw(g) \ge \lceil \frac{deg(v)}2 \rceil$.
- page 30 : carving-width upper bounds maximum degree by a linear function – Lemma 2.20 Carving-width of a graph $G$ is at least $\Delta(G)$ where $\Delta(G)$ is the maximum degree of a graph $G$.
- 2008 Simulating Quantum Computation by Contracting Tensor Networks by Markov, Shi
- page 10 : contraction complexity upper bounds maximum degree by a linear function – $cc(G) \ge \Delta(G) - 1$
- unknown source
- maximum degree upper bounds excluded top-minor by a constant
- maximum degree upper bounds h-index by a linear function – As h-index seeks $k$ vertices of degree $k$ it is trivially upper bound by maximum degree.
- bandwidth upper bounds maximum degree by a linear function – Each vertex has an integer $i$ and may be connected only to vertices whose difference from $i$ is at most $k$. There are at most $k$ bigger and $k$ smaller such neighbors.
- maximum degree upper bounds c-closure by a computable function
- grid upper bounds maximum degree by a constant
- graph class planar is not constant maximum degree
- graph class star is not constant maximum degree – trivially
- assumed
- pathwidth+maxdegree upper bounds maximum degree by a linear function – by definition
- degree treewidth upper bounds maximum degree by a linear function – by definition
- maximum degree upper bounds distance to maximum degree by a linear function – by definition
- diameter+max degree upper bounds maximum degree by a linear function – by definition
- grid upper bounds maximum degree by a constant – By definition
- bounded components upper bounds maximum degree by a linear function – By definition
- linear forest upper bounds maximum degree by a constant – By definition
- cycles upper bounds maximum degree by a constant – By definition
- maximum degree is equivalent to maximum degree – assumed
- Comparing Graph Parameters by Schröder
- page 24 : graph classes with bounded vertex cover are not bounded maximum degree – Proposition 3.19
- page 28 : graph classes with bounded maximum degree are not bounded clique-width – Proposition 3.26
- page 28 : graph classes with bounded maximum degree are not bounded bisection bandwidth – Proposition 3.26