distance to bipartite
equivalent to: odd cycle transversal, distance to bipartite
Relations
Other | Relation from | Relation to |
---|---|---|
acyclic chromatic number | exclusion | exclusion |
arboricity | exclusion | exclusion |
average degree | exclusion | exclusion |
average distance | exclusion | exclusion |
bandwidth | exclusion | exclusion |
bipartite | constant | unknown to HOPS |
bipartite number | exclusion | unknown to HOPS |
bisection bandwidth | exclusion | exclusion |
block | unbounded | exclusion |
book thickness | exclusion | exclusion |
boolean width | exclusion | exclusion |
bounded components | exclusion | exclusion |
boxicity | exclusion | exclusion |
branch width | exclusion | exclusion |
c-closure | exclusion | exclusion |
carving-width | exclusion | exclusion |
chordal | unbounded | exclusion |
chordality | exclusion | upper bound |
chromatic number | exclusion | upper bound |
clique cover number | exclusion | exclusion |
clique-tree-width | exclusion | exclusion |
clique-width | exclusion | exclusion |
cluster | unbounded | exclusion |
co-cluster | unbounded | exclusion |
cograph | unbounded | exclusion |
complete | unbounded | exclusion |
connected | unbounded | unknown to HOPS |
cutwidth | exclusion | exclusion |
cycle | constant | exclusion |
cycles | unbounded | exclusion |
d-path-free | exclusion | exclusion |
degeneracy | exclusion | exclusion |
degree treewidth | exclusion | exclusion |
diameter | exclusion | exclusion |
diameter+max degree | exclusion | exclusion |
disjoint cycles | unbounded | exclusion |
distance to block | exclusion | exclusion |
distance to bounded components | exclusion | exclusion |
distance to chordal | exclusion | exclusion |
distance to cluster | exclusion | exclusion |
distance to co-cluster | exclusion | exclusion |
distance to cograph | exclusion | exclusion |
distance to complete | exclusion | exclusion |
distance to edgeless | upper bound | exclusion |
distance to forest | upper bound | exclusion |
distance to interval | exclusion | exclusion |
distance to linear forest | upper bound | exclusion |
distance to maximum degree | exclusion | exclusion |
distance to outerplanar | exclusion | exclusion |
distance to perfect | exclusion | upper bound |
distance to planar | exclusion | exclusion |
distance to stars | upper bound | exclusion |
domatic number | exclusion | exclusion |
domination number | exclusion | exclusion |
edge clique cover number | exclusion | exclusion |
edge connectivity | exclusion | exclusion |
edgeless | constant | exclusion |
feedback edge set | upper bound | exclusion |
feedback vertex set | upper bound | exclusion |
forest | constant | exclusion |
genus | exclusion | exclusion |
girth | exclusion | exclusion |
grid | constant | exclusion |
h-index | exclusion | exclusion |
inf-flip-width | exclusion | exclusion |
interval | unbounded | exclusion |
iterated type partitions | exclusion | exclusion |
linear clique-width | exclusion | exclusion |
linear forest | constant | exclusion |
linear NLC-width | exclusion | exclusion |
linear rank-width | exclusion | exclusion |
maximum clique | exclusion | upper bound |
maximum degree | exclusion | exclusion |
maximum independent set | exclusion | exclusion |
maximum induced matching | exclusion | exclusion |
maximum leaf number | upper bound | exclusion |
maximum matching | unknown to HOPS | exclusion |
maximum matching on bipartite graphs | upper bound | exclusion |
mim-width | exclusion | unknown to HOPS |
minimum degree | exclusion | exclusion |
mm-width | exclusion | exclusion |
modular-width | exclusion | exclusion |
module-width | exclusion | exclusion |
neighborhood diversity | exclusion | exclusion |
NLC-width | exclusion | exclusion |
NLCT-width | exclusion | exclusion |
odd cycle transversal | equal | equal |
outerplanar | unbounded | exclusion |
path | constant | exclusion |
pathwidth | exclusion | exclusion |
pathwidth+maxdegree | exclusion | exclusion |
perfect | unbounded | unknown to HOPS |
planar | unbounded | exclusion |
radius-r flip-width | exclusion | unknown to HOPS |
rank-width | exclusion | exclusion |
shrub-depth | exclusion | exclusion |
sim-width | exclusion | unknown to HOPS |
star | constant | exclusion |
stars | constant | exclusion |
topological bandwidth | exclusion | exclusion |
tree | constant | exclusion |
tree-independence number | exclusion | unknown to HOPS |
treedepth | exclusion | exclusion |
treelength | exclusion | unknown to HOPS |
treewidth | exclusion | exclusion |
twin-cover number | exclusion | exclusion |
twin-width | exclusion | exclusion |
vertex connectivity | unknown to HOPS | exclusion |
vertex cover | upper bound | exclusion |
vertex integrity | exclusion | exclusion |
Results
- 2022 Expanding the Graph Parameter Hierarchy by Tran
- page 38 : bounded twin-width does not imply bounded distance to bipartite – Proposition 6.6. Twin-width is incomparable to Distance to Bipartite.
- page 38 : bounded distance to bipartite does not imply bounded twin-width – Proposition 6.6. Twin-width is incomparable to Distance to Bipartite.
- 2011 Chordal Bipartite Graphs with High Boxicity by Chandran, Francis, Mathew
- page 9 : bounded distance to bipartite does not imply bounded boxicity – Theorem 2 For any $b \in \mathbb N^+$, there exists a chordal bipartite graph $G$ (ed: i.e. bipartite graph with no induced cycle on more than 4 vertices) with $\mathrm{box}(G) > b$.
- unknown source
- odd cycle transversal is equivalent to distance to bipartite – Bipartite graphs is the graph class without any odd cycles.
- distance to bipartite is equivalent to odd cycle transversal – Bipartite graphs is the graph class without any odd cycles.
- distance to bipartite upper bounds chromatic number by a linear function – Removed vertices get one color each and we need only $2$ colors for the rest.
- Comparing Graph Parameters by Schröder
- page 20 : bounded distance to bipartite does not imply bounded distance to chordal – Proposition 3.12
- page 20 : bounded distance to bipartite does not imply bounded vertex connectivity – Proposition 3.12
- page 20 : bounded distance to bipartite does not imply bounded domatic number – Proposition 3.12
- page 28 : bounded distance to bipartite does not imply bounded clique-width – Proposition 3.26
- page 28 : bounded distance to bipartite does not imply bounded bisection bandwidth – Proposition 3.26
- assumed
- graph class bipartite has constant distance to bipartite – by definition