distance to linear forest
tags: linear variant
equivalent to: distance to linear forest
providers: ISGCI
Relations
Other | Relation from | Relation to |
---|---|---|
acyclic chromatic number | exclusion | upper bound |
arboricity | exclusion | upper bound |
average degree | exclusion | upper bound |
average distance | exclusion | exclusion |
bandwidth | exclusion | exclusion |
bipartite | unbounded | unknown to HOPS |
bipartite number | exclusion | unknown to HOPS |
bisection bandwidth | exclusion | exclusion |
block | unbounded | unknown to HOPS |
book thickness | exclusion | upper bound |
boolean width | exclusion | upper bound |
bounded components | exclusion | exclusion |
boxicity | exclusion | upper bound |
branch width | exclusion | upper bound |
c-closure | exclusion | exclusion |
carving-width | exclusion | exclusion |
chordal | unbounded | unknown to HOPS |
chordality | exclusion | upper bound |
chromatic number | exclusion | upper bound |
clique cover number | exclusion | exclusion |
clique-tree-width | exclusion | upper bound |
clique-width | exclusion | upper bound |
cluster | unbounded | exclusion |
co-cluster | unbounded | exclusion |
cograph | unbounded | exclusion |
complete | unbounded | exclusion |
connected | unbounded | unknown to HOPS |
cutwidth | exclusion | exclusion |
cycle | constant | exclusion |
cycles | unbounded | exclusion |
d-path-free | exclusion | exclusion |
degeneracy | exclusion | upper bound |
degree treewidth | exclusion | exclusion |
diameter | exclusion | exclusion |
diameter+max degree | exclusion | exclusion |
disjoint cycles | unbounded | exclusion |
distance to bipartite | exclusion | upper bound |
distance to block | exclusion | upper bound |
distance to bounded components | exclusion | exclusion |
distance to chordal | exclusion | upper bound |
distance to cluster | exclusion | exclusion |
distance to co-cluster | exclusion | exclusion |
distance to cograph | exclusion | exclusion |
distance to complete | exclusion | exclusion |
distance to edgeless | upper bound | exclusion |
distance to forest | exclusion | upper bound |
distance to interval | exclusion | upper bound |
distance to maximum degree | exclusion | upper bound |
distance to outerplanar | exclusion | upper bound |
distance to perfect | exclusion | upper bound |
distance to planar | exclusion | upper bound |
distance to stars | exclusion | exclusion |
domatic number | exclusion | upper bound |
domination number | exclusion | exclusion |
edge clique cover number | exclusion | exclusion |
edge connectivity | exclusion | upper bound |
edgeless | constant | exclusion |
feedback edge set | exclusion | exclusion |
feedback vertex set | exclusion | upper bound |
forest | unbounded | exclusion |
genus | exclusion | exclusion |
girth | exclusion | exclusion |
grid | unbounded | exclusion |
h-index | exclusion | upper bound |
inf-flip-width | exclusion | upper bound |
interval | unbounded | unknown to HOPS |
iterated type partitions | exclusion | exclusion |
linear clique-width | exclusion | upper bound |
linear forest | constant | exclusion |
linear NLC-width | exclusion | upper bound |
linear rank-width | exclusion | upper bound |
maximum clique | exclusion | upper bound |
maximum degree | exclusion | exclusion |
maximum independent set | exclusion | exclusion |
maximum induced matching | exclusion | exclusion |
maximum leaf number | upper bound | exclusion |
maximum matching | unknown to HOPS | exclusion |
maximum matching on bipartite graphs | upper bound | exclusion |
mim-width | exclusion | upper bound |
minimum degree | exclusion | upper bound |
mm-width | exclusion | upper bound |
modular-width | exclusion | exclusion |
module-width | exclusion | upper bound |
neighborhood diversity | exclusion | exclusion |
NLC-width | exclusion | upper bound |
NLCT-width | exclusion | upper bound |
odd cycle transversal | exclusion | upper bound |
outerplanar | unbounded | exclusion |
path | constant | exclusion |
pathwidth | exclusion | upper bound |
pathwidth+maxdegree | exclusion | exclusion |
perfect | unbounded | unknown to HOPS |
planar | unbounded | exclusion |
radius-r flip-width | exclusion | upper bound |
rank-width | exclusion | upper bound |
shrub-depth | exclusion | unknown to HOPS |
sim-width | exclusion | upper bound |
star | constant | exclusion |
stars | unbounded | exclusion |
topological bandwidth | exclusion | exclusion |
tree | unbounded | exclusion |
tree-independence number | exclusion | upper bound |
treedepth | exclusion | exclusion |
treelength | exclusion | unknown to HOPS |
treewidth | exclusion | upper bound |
twin-cover number | exclusion | exclusion |
twin-width | exclusion | upper bound |
vertex connectivity | unknown to HOPS | unknown to HOPS |
vertex cover | upper bound | exclusion |
vertex integrity | exclusion | exclusion |
Results
- 2019 The Graph Parameter Hierarchy by Sorge
- page 8 : maximum leaf number upper bounds distance to linear forest by a linear function – Lemma 4.10 ([14]). The max-leaf number $\mathrm{ml}$ upper bounds the distance to disjoint paths $d$. We have $d \le \mathrm{ml}-1$.
- assumed
- graph class linear forest has constant distance to linear forest – by definition
- Comparing Graph Parameters by Schröder
- page 12 : distance to linear forest upper bounds h-index by a linear function – Proposition 3.2
- unknown source
- distance to linear forest upper bounds pathwidth by a linear function – After removal of $k$ vertices the remaining class has a bounded width $w$. So by including the removed vertices in every bag, we can achieve decomposition of width $w+k$
- distance to linear forest upper bounds pathwidth by a linear function – After removal of $k$ vertices the remaining class has a bounded width $w$. So by including the removed vertices in every bag, we can achieve decomposition of width $w+k$
- maximum leaf number upper bounds distance to linear forest by a computable function