cutwidth
tags: vertex order
equivalent to: cutwidth, pathwidth+maxdegree
providers: ISGCI
Relations
Other | Relation from | Relation to |
---|---|---|
acyclic chromatic number | exclusion | upper bound |
arboricity | exclusion | upper bound |
average degree | exclusion | upper bound |
average distance | exclusion | exclusion |
bandwidth | non-tight bounds | unknown to HOPS |
bipartite | unbounded | exclusion |
bipartite number | exclusion | unknown to HOPS |
bisection bandwidth | exclusion | unknown to HOPS |
block | unbounded | exclusion |
book thickness | exclusion | upper bound |
boolean width | exclusion | upper bound |
bounded components | upper bound | exclusion |
boxicity | exclusion | upper bound |
branch width | exclusion | upper bound |
c-closure | exclusion | upper bound |
carving-width | unknown to HOPS | upper bound |
chordal | unbounded | exclusion |
chordality | exclusion | upper bound |
chromatic number | exclusion | upper bound |
clique cover number | exclusion | exclusion |
clique-tree-width | exclusion | upper bound |
clique-width | exclusion | upper bound |
cluster | unbounded | exclusion |
co-cluster | unbounded | exclusion |
cograph | unbounded | exclusion |
complete | unbounded | exclusion |
connected | unbounded | unknown to HOPS |
cycle | constant | exclusion |
cycles | constant | exclusion |
d-path-free | exclusion | exclusion |
degeneracy | exclusion | upper bound |
degree treewidth | unknown to HOPS | upper bound |
diameter | exclusion | exclusion |
diameter+max degree | upper bound | exclusion |
disjoint cycles | unbounded | exclusion |
distance to bipartite | exclusion | exclusion |
distance to block | exclusion | exclusion |
distance to bounded components | exclusion | exclusion |
distance to chordal | exclusion | exclusion |
distance to cluster | exclusion | exclusion |
distance to co-cluster | exclusion | exclusion |
distance to cograph | exclusion | exclusion |
distance to complete | exclusion | exclusion |
distance to edgeless | exclusion | exclusion |
distance to forest | exclusion | exclusion |
distance to interval | exclusion | exclusion |
distance to linear forest | exclusion | exclusion |
distance to maximum degree | exclusion | upper bound |
distance to outerplanar | exclusion | exclusion |
distance to perfect | exclusion | exclusion |
distance to planar | exclusion | exclusion |
distance to stars | exclusion | exclusion |
domatic number | exclusion | upper bound |
domination number | exclusion | exclusion |
edge clique cover number | exclusion | exclusion |
edge connectivity | exclusion | upper bound |
edgeless | constant | exclusion |
feedback edge set | exclusion | exclusion |
feedback vertex set | exclusion | exclusion |
forest | unbounded | exclusion |
genus | exclusion | exclusion |
girth | exclusion | exclusion |
grid | unbounded | exclusion |
h-index | exclusion | upper bound |
inf-flip-width | exclusion | upper bound |
interval | unbounded | exclusion |
iterated type partitions | exclusion | exclusion |
linear clique-width | exclusion | upper bound |
linear forest | constant | exclusion |
linear NLC-width | exclusion | upper bound |
linear rank-width | exclusion | upper bound |
maximum clique | exclusion | upper bound |
maximum degree | exclusion | upper bound |
maximum independent set | exclusion | exclusion |
maximum induced matching | exclusion | exclusion |
maximum leaf number | upper bound | exclusion |
maximum matching | exclusion | exclusion |
maximum matching on bipartite graphs | exclusion | exclusion |
mim-width | exclusion | upper bound |
minimum degree | exclusion | upper bound |
mm-width | exclusion | upper bound |
modular-width | exclusion | exclusion |
module-width | exclusion | upper bound |
neighborhood diversity | exclusion | exclusion |
NLC-width | exclusion | upper bound |
NLCT-width | exclusion | upper bound |
odd cycle transversal | exclusion | exclusion |
outerplanar | unbounded | exclusion |
path | constant | exclusion |
pathwidth | exclusion | upper bound |
pathwidth+maxdegree | upper bound | upper bound |
perfect | unbounded | exclusion |
planar | unbounded | exclusion |
radius-r flip-width | exclusion | upper bound |
rank-width | exclusion | upper bound |
shrub-depth | exclusion | unknown to HOPS |
sim-width | exclusion | upper bound |
star | unbounded | exclusion |
stars | unbounded | exclusion |
topological bandwidth | unknown to HOPS | unknown to HOPS |
tree | unbounded | exclusion |
tree-independence number | exclusion | upper bound |
treedepth | exclusion | exclusion |
treelength | exclusion | unknown to HOPS |
treewidth | exclusion | upper bound |
twin-cover number | exclusion | exclusion |
twin-width | exclusion | upper bound |
vertex connectivity | exclusion | unknown to HOPS |
vertex cover | exclusion | exclusion |
vertex integrity | exclusion | exclusion |
Results
- 2010 Comparing 17 graph parameters by Sasák
- page 28 : cutwidth upper bounds maximum degree by a linear function – Lemma 2.18. For any graph $G$ and any vertex $v \in V(G), cutw(g) \ge \lceil \frac{deg(v)}2 \rceil$.
- page 38 : cutwidth upper bounds carving-width by a linear function – Theorem 4.3 (carw $\prec$ cutw) Carving-width is bounded by cut-width.
- 1998 A partial $k$-arboretum of graphs with bounded treewidth by Bodlaender
- page 22 : cutwidth – Let $G=(V,E)$ be a graph, and let $f\colon V\to {1,2,\dots,n}$ be a linear ordering of $G$. … 2. The \emph{cutwidth} of $f$ is $\max_{1\le i\le n} |{(u,v)\in E \mid f(u) \le i < f(v) }|$. … [cutwidth] of a graph $G$ is the minimum [cutwidth] … over all possible linear orderings of $G$.
- page 24 : cutwidth upper bounds pathwidth by a linear function – Theorem 47. For every graph $G$, the pathwidth of $G$ is at most the cutwidth of $G$.
- page 24 : pathwidth+maxdegree upper bounds cutwidth by a linear function – Theorem 49.
- page 24 : cutwidth upper bounds pathwidth+maxdegree by a linear function – Theorem 49.
- unknown source
- bandwidth upper and lower bounds cutwidth by a polynomial function – Any bandwidth bound cutwidth quadratically. An example where this happens is $(P_n)^k$ which has bandwidth $k$ and cutwidth $O(k^2)$; both seem to be optimal.
- bounded components upper bounds cutwidth by a polynomial function – By greedily placing one component after another.