h-index
equivalent to: distance to maximum degree, h-index
Relations
Other | Relation from | Relation to |
---|---|---|
acyclic chromatic number | exclusion | upper bound |
arboricity | exclusion | upper bound |
average degree | exclusion | upper bound |
average distance | exclusion | exclusion |
bandwidth | upper bound | exclusion |
bipartite | unbounded | exclusion |
bipartite number | exclusion | unknown to HOPS |
bisection bandwidth | exclusion | exclusion |
block | unbounded | exclusion |
book thickness | exclusion | unknown to HOPS |
boolean width | exclusion | exclusion |
bounded components | upper bound | exclusion |
boxicity | exclusion | upper bound |
branch width | exclusion | exclusion |
c-closure | exclusion | exclusion |
carving-width | upper bound | exclusion |
chordal | unbounded | exclusion |
chordality | exclusion | upper bound |
chromatic number | exclusion | upper bound |
clique cover number | exclusion | exclusion |
clique-tree-width | exclusion | exclusion |
clique-width | exclusion | exclusion |
cluster | unbounded | exclusion |
co-cluster | unbounded | exclusion |
cograph | unbounded | exclusion |
complete | unbounded | exclusion |
connected | unbounded | unknown to HOPS |
cutwidth | upper bound | exclusion |
cycle | constant | exclusion |
cycles | constant | exclusion |
d-path-free | exclusion | exclusion |
degeneracy | exclusion | upper bound |
degree treewidth | upper bound | exclusion |
diameter | exclusion | exclusion |
diameter+max degree | upper bound | exclusion |
disjoint cycles | unbounded | exclusion |
distance to bipartite | exclusion | exclusion |
distance to block | exclusion | exclusion |
distance to bounded components | upper bound | exclusion |
distance to chordal | exclusion | exclusion |
distance to cluster | exclusion | exclusion |
distance to co-cluster | exclusion | exclusion |
distance to cograph | exclusion | exclusion |
distance to complete | exclusion | exclusion |
distance to edgeless | upper bound | exclusion |
distance to forest | exclusion | exclusion |
distance to interval | exclusion | exclusion |
distance to linear forest | upper bound | exclusion |
distance to maximum degree | upper bound | upper bound |
distance to outerplanar | exclusion | exclusion |
distance to perfect | exclusion | exclusion |
distance to planar | exclusion | exclusion |
distance to stars | exclusion | exclusion |
domatic number | exclusion | upper bound |
domination number | exclusion | exclusion |
edge clique cover number | exclusion | exclusion |
edge connectivity | exclusion | upper bound |
edgeless | constant | exclusion |
feedback edge set | exclusion | exclusion |
feedback vertex set | exclusion | exclusion |
forest | unbounded | exclusion |
genus | exclusion | exclusion |
girth | exclusion | exclusion |
grid | constant | exclusion |
inf-flip-width | exclusion | exclusion |
interval | unbounded | exclusion |
iterated type partitions | exclusion | exclusion |
linear clique-width | exclusion | exclusion |
linear forest | constant | exclusion |
linear NLC-width | exclusion | exclusion |
linear rank-width | exclusion | exclusion |
maximum clique | exclusion | upper bound |
maximum degree | upper bound | exclusion |
maximum independent set | exclusion | exclusion |
maximum induced matching | exclusion | exclusion |
maximum leaf number | upper bound | exclusion |
maximum matching | unknown to HOPS | exclusion |
maximum matching on bipartite graphs | upper bound | exclusion |
mim-width | exclusion | unknown to HOPS |
minimum degree | exclusion | upper bound |
mm-width | exclusion | exclusion |
modular-width | exclusion | exclusion |
module-width | exclusion | exclusion |
neighborhood diversity | exclusion | exclusion |
NLC-width | exclusion | exclusion |
NLCT-width | exclusion | exclusion |
odd cycle transversal | exclusion | exclusion |
outerplanar | unbounded | exclusion |
path | constant | exclusion |
pathwidth | exclusion | exclusion |
pathwidth+maxdegree | upper bound | exclusion |
perfect | unbounded | exclusion |
planar | unbounded | exclusion |
radius-r flip-width | exclusion | unknown to HOPS |
rank-width | exclusion | exclusion |
shrub-depth | exclusion | exclusion |
sim-width | exclusion | unknown to HOPS |
star | constant | exclusion |
stars | unbounded | exclusion |
topological bandwidth | unknown to HOPS | exclusion |
tree | unbounded | exclusion |
tree-independence number | exclusion | unknown to HOPS |
treedepth | exclusion | exclusion |
treelength | exclusion | unknown to HOPS |
treewidth | exclusion | exclusion |
twin-cover number | exclusion | exclusion |
twin-width | exclusion | exclusion |
vertex connectivity | unknown to HOPS | unknown to HOPS |
vertex cover | upper bound | exclusion |
vertex integrity | upper bound | exclusion |
Results
- 2019 The Graph Parameter Hierarchy by Sorge
- page 8 : h-index upper bounds acyclic chromatic number by a polynomial function – Lemma 4.7. The acyclic chromatic number $\chi_a$ is upper bounded by the $h$-index $h$. We have $\chi_a \le h(h+1)/2$.
- https://link.springer.com/chapter/10.1007/978-3-642-03367-4_25
- h-index – … $h$ is the $h$-index of the graph, the maximum number such that the graph contains $h$ vertices of degree at least $h$.
- Comparing Graph Parameters by Schröder
- page 12 : distance to linear forest upper bounds h-index by a linear function – Proposition 3.2
- page 25 : bounded treedepth does not imply bounded h-index – Proposition 3.22
- page 25 : bounded feedback edge set does not imply bounded h-index – Proposition 3.22
- unknown source
- maximum degree upper bounds h-index by a linear function – As h-index seeks $k$ vertices of degree $k$ it is trivially upper bound by maximum degree.
- h-index upper bounds distance to maximum degree by a linear function – Remove the $h$ vertices of degree at least $h$ to get a graph that has maximum degree $h$.
- distance to maximum degree upper bounds h-index by a linear function – Removal of $k$ vertices yielding a graph with maximum degree $c$ means that there were $k$ vertices of arbitrary degree and the remaining vertices had degree at most $k+c$. Hence, $h$-index is no more than $k+c$.
- graph class stars has unbounded h-index
- graph class star has constant h-index – trivially
- graph class tree has unbounded h-index – trivially