contraction complexity
functionally equivalent to: treespan, degree treewidth, domino treewidth
Definition: see Simulating Quantum Computation by Contracting Tensor Networks by Markov, Shi
Relations
| Other | Relation from | Relation to | |
|---|---|---|---|
| acyclic chromatic number | ■ | exclusion | upper bound |
| admissibility | ■ | exclusion | upper bound |
| arboricity | ■ | exclusion | upper bound |
| average degree | ■ | exclusion | upper bound |
| average distance | ■ | exclusion | exclusion |
| bandwidth | ■ | upper bound | unknown to HOPS |
| bipartite | ■ | unbounded | exclusion |
| bipartite number | ■ | exclusion | exclusion |
| bisection bandwidth | ■ | exclusion | unknown to HOPS |
| block | ■ | unbounded | exclusion |
| book thickness | ■ | exclusion | upper bound |
| boolean width | ■ | exclusion | upper bound |
| bounded components | ■ | upper bound | exclusion |
| bounded expansion | ■ | exclusion | upper bound |
| boxicity | ■ | exclusion | upper bound |
| branch width | ■ | exclusion | upper bound |
| c-closure | ■ | exclusion | upper bound |
| carving-width | ■ | upper bound | unknown to HOPS |
| chi-bounded | ■ | exclusion | upper bound |
| chordal | ■ | unbounded | exclusion |
| chordality | ■ | exclusion | upper bound |
| chromatic number | ■ | exclusion | upper bound |
| clique cover number | ■ | exclusion | exclusion |
| clique-tree-width | ■ | exclusion | upper bound |
| clique-width | ■ | exclusion | upper bound |
| cluster | ■ | unbounded | exclusion |
| co-cluster | ■ | unbounded | exclusion |
| cograph | ■ | unbounded | exclusion |
| complete | ■ | unbounded | exclusion |
| connected | ■ | exclusion | avoids |
| contraction complexity | ■ | equal | equal |
| cutwidth | ■ | upper bound | unknown to HOPS |
| cycle | ■ | upper bound | exclusion |
| cycles | ■ | upper bound | exclusion |
| d-admissibility | ■ | exclusion | upper bound |
| d-path-free | ■ | exclusion | exclusion |
| degeneracy | ■ | exclusion | upper bound |
| degree treewidth | ■ | upper bound | upper bound |
| diameter | ■ | exclusion | exclusion |
| diameter+max degree | ■ | upper bound | exclusion |
| distance to bipartite | ■ | exclusion | exclusion |
| distance to block | ■ | exclusion | exclusion |
| distance to bounded components | ■ | exclusion | exclusion |
| distance to chordal | ■ | exclusion | exclusion |
| distance to cluster | ■ | exclusion | exclusion |
| distance to co-cluster | ■ | exclusion | exclusion |
| distance to cograph | ■ | exclusion | exclusion |
| distance to complete | ■ | exclusion | exclusion |
| distance to edgeless | ■ | exclusion | exclusion |
| distance to forest | ■ | exclusion | exclusion |
| distance to interval | ■ | exclusion | exclusion |
| distance to linear forest | ■ | exclusion | exclusion |
| distance to maximum degree | ■ | exclusion | upper bound |
| distance to outerplanar | ■ | exclusion | exclusion |
| distance to perfect | ■ | exclusion | exclusion |
| distance to planar | ■ | exclusion | exclusion |
| distance to stars | ■ | exclusion | exclusion |
| domatic number | ■ | exclusion | upper bound |
| domination number | ■ | exclusion | exclusion |
| domino treewidth | ■ | upper bound | upper bound |
| edge clique cover number | ■ | exclusion | exclusion |
| edge connectivity | ■ | exclusion | upper bound |
| edge-cut width | ■ | exclusion | unknown to HOPS |
| edge-treewidth | ■ | exclusion | upper bound |
| edgeless | ■ | upper bound | avoids |
| excluded minor | ■ | exclusion | unknown to HOPS |
| excluded planar minor | ■ | unknown to HOPS | unknown to HOPS |
| excluded top-minor | ■ | exclusion | upper bound |
| feedback edge set | ■ | exclusion | exclusion |
| feedback vertex set | ■ | exclusion | exclusion |
| flip-width | ■ | exclusion | upper bound |
| forest | ■ | unbounded | exclusion |
| genus | ■ | exclusion | exclusion |
| grid | ■ | unbounded | exclusion |
| h-index | ■ | exclusion | upper bound |
| interval | ■ | unbounded | exclusion |
| iterated type partitions | ■ | exclusion | exclusion |
| linear clique-width | ■ | exclusion | unknown to HOPS |
| linear forest | ■ | upper bound | exclusion |
| linear NLC-width | ■ | exclusion | unknown to HOPS |
| linear rank-width | ■ | exclusion | unknown to HOPS |
| maximum clique | ■ | exclusion | upper bound |
| maximum degree | ■ | exclusion | upper bound |
| maximum independent set | ■ | exclusion | exclusion |
| maximum induced matching | ■ | exclusion | exclusion |
| maximum leaf number | ■ | upper bound | exclusion |
| maximum matching | ■ | exclusion | exclusion |
| maximum matching on bipartite graphs | ■ | exclusion | exclusion |
| merge-width | ■ | exclusion | upper bound |
| mim-width | ■ | exclusion | upper bound |
| minimum degree | ■ | exclusion | upper bound |
| mm-width | ■ | exclusion | upper bound |
| modular-width | ■ | exclusion | exclusion |
| module-width | ■ | exclusion | upper bound |
| monadically dependent | ■ | exclusion | upper bound |
| monadically stable | ■ | exclusion | upper bound |
| neighborhood diversity | ■ | exclusion | exclusion |
| NLC-width | ■ | exclusion | upper bound |
| NLCT-width | ■ | exclusion | upper bound |
| nowhere dense | ■ | exclusion | upper bound |
| odd cycle transversal | ■ | exclusion | exclusion |
| outerplanar | ■ | unknown to HOPS | exclusion |
| overlap treewidth | ■ | exclusion | upper bound |
| path | ■ | upper bound | exclusion |
| pathwidth | ■ | exclusion | unknown to HOPS |
| pathwidth+maxdegree | ■ | upper bound | unknown to HOPS |
| perfect | ■ | unbounded | exclusion |
| planar | ■ | unbounded | exclusion |
| radius-inf flip-width | ■ | exclusion | upper bound |
| radius-r flip-width | ■ | exclusion | upper bound |
| rank-width | ■ | exclusion | upper bound |
| series-parallel | ■ | unknown to HOPS | unknown to HOPS |
| shrub-depth | ■ | exclusion | unknown to HOPS |
| sim-width | ■ | exclusion | upper bound |
| size | ■ | upper bound | exclusion |
| slim tree-cut width | ■ | exclusion | upper bound |
| sparse twin-width | ■ | exclusion | upper bound |
| star | ■ | unbounded | exclusion |
| stars | ■ | unbounded | exclusion |
| strong coloring number | ■ | exclusion | upper bound |
| strong d-coloring number | ■ | exclusion | upper bound |
| strong inf-coloring number | ■ | exclusion | upper bound |
| topological bandwidth | ■ | unknown to HOPS | unknown to HOPS |
| tree | ■ | unbounded | exclusion |
| tree-cut width | ■ | exclusion | upper bound |
| tree-independence number | ■ | exclusion | upper bound |
| tree-partition-width | ■ | exclusion | upper bound |
| treebandwidth | ■ | exclusion | upper bound |
| treedepth | ■ | exclusion | exclusion |
| treelength | ■ | exclusion | unknown to HOPS |
| treespan | ■ | upper bound | upper bound |
| treewidth | ■ | exclusion | upper bound |
| twin-cover number | ■ | exclusion | exclusion |
| twin-width | ■ | exclusion | upper bound |
| vertex connectivity | ■ | exclusion | unknown to HOPS |
| vertex cover | ■ | exclusion | exclusion |
| vertex integrity | ■ | exclusion | exclusion |
| weak coloring number | ■ | exclusion | upper bound |
| weak d-coloring number | ■ | exclusion | upper bound |
| weak inf-coloring number | ■ | exclusion | exclusion |
| weakly sparse | ■ | exclusion | upper bound |
| weakly sparse and merge width | ■ | exclusion | upper bound |
Results
- 2008 Simulating Quantum Computation by Contracting Tensor Networks by Markov, Shi
- page 10 : contraction complexity – Definition 4.1. The contraction of an edge e removes e and replaces its end vertices (or vertex) with a single vertex. A contraction ordering π is an ordering of all the edges of G, π(1), π(2), . . ., π(|E(G)|). The complexity of π is the maximum degree of a merged vertex during the contraction process. The contraction complexity of G, denoted by cc(G), is the minimum complexity of a contraction ordering.
- page 10 : contraction complexity upper bounds maximum degree by a linear function – $cc(G) \ge \Delta(G) - 1$
- page 11 : contraction complexity upper bounds treewidth by a linear function – Proposition 4.2. … $cc(G)=tw(G^)$ … Lemma 4.4. $(tw(G) - 1)/2 \le tw(G^) \le \Delta(G)(tw(G) + 1) - 1.$
- page 11 : degree treewidth upper bounds contraction complexity by a polynomial function – Proposition 4.2. … $cc(G)=tw(G^)$ … Lemma 4.4. $(tw(G) - 1)/2 \le tw(G^) \le \Delta(G)(tw(G) + 1) - 1.$
- assumed
- contraction complexity is equivalent to contraction complexity – assumed