chi-bounded
Definition: For $\chi$ being chromatic number and $\omega$ being maximum clique we say a graph class is $\chi$-bounded if there exists a function $f$ such that $\chi(G) \le f(\omega(G))$ for every $G$ from the class.
Relations
Other | Relation from | Relation to | |
---|---|---|---|
acyclic chromatic number | ■ | unknown to HOPS | exclusion |
admissibility | ■ | unknown to HOPS | exclusion |
arboricity | ■ | unknown to HOPS | exclusion |
average degree | ■ | unknown to HOPS | exclusion |
average distance | ■ | unknown to HOPS | exclusion |
bandwidth | ■ | upper bound | exclusion |
bipartite | ■ | upper bound | exclusion |
bipartite number | ■ | unknown to HOPS | exclusion |
bisection bandwidth | ■ | unknown to HOPS | exclusion |
block | ■ | upper bound | exclusion |
book thickness | ■ | unknown to HOPS | exclusion |
boolean width | ■ | upper bound | exclusion |
bounded components | ■ | upper bound | exclusion |
bounded expansion | ■ | unknown to HOPS | avoids |
boxicity | ■ | unknown to HOPS | exclusion |
branch width | ■ | upper bound | exclusion |
c-closure | ■ | unknown to HOPS | exclusion |
carving-width | ■ | upper bound | exclusion |
chi-bounded | ■ | equal | equal |
chordal | ■ | upper bound | exclusion |
chordality | ■ | unknown to HOPS | exclusion |
chromatic number | ■ | unknown to HOPS | exclusion |
clique cover number | ■ | unknown to HOPS | exclusion |
clique-tree-width | ■ | upper bound | exclusion |
clique-width | ■ | upper bound | exclusion |
cluster | ■ | upper bound | exclusion |
co-cluster | ■ | upper bound | exclusion |
cograph | ■ | upper bound | exclusion |
complete | ■ | upper bound | exclusion |
connected | ■ | unknown to HOPS | avoids |
contraction complexity | ■ | upper bound | exclusion |
cutwidth | ■ | upper bound | exclusion |
cycle | ■ | upper bound | exclusion |
cycles | ■ | upper bound | exclusion |
d-admissibility | ■ | unknown to HOPS | unknown to HOPS |
d-path-free | ■ | upper bound | exclusion |
degeneracy | ■ | unknown to HOPS | exclusion |
degree treewidth | ■ | upper bound | exclusion |
diameter | ■ | unknown to HOPS | exclusion |
diameter+max degree | ■ | upper bound | exclusion |
distance to bipartite | ■ | unknown to HOPS | exclusion |
distance to block | ■ | unknown to HOPS | exclusion |
distance to bounded components | ■ | upper bound | exclusion |
distance to chordal | ■ | unknown to HOPS | exclusion |
distance to cluster | ■ | upper bound | exclusion |
distance to co-cluster | ■ | upper bound | exclusion |
distance to cograph | ■ | upper bound | exclusion |
distance to complete | ■ | upper bound | exclusion |
distance to edgeless | ■ | upper bound | exclusion |
distance to forest | ■ | upper bound | exclusion |
distance to interval | ■ | unknown to HOPS | exclusion |
distance to linear forest | ■ | upper bound | exclusion |
distance to maximum degree | ■ | unknown to HOPS | exclusion |
distance to outerplanar | ■ | upper bound | exclusion |
distance to perfect | ■ | unknown to HOPS | exclusion |
distance to planar | ■ | unknown to HOPS | exclusion |
distance to stars | ■ | upper bound | exclusion |
domatic number | ■ | unknown to HOPS | exclusion |
domination number | ■ | unknown to HOPS | exclusion |
domino treewidth | ■ | upper bound | exclusion |
edge clique cover number | ■ | upper bound | exclusion |
edge connectivity | ■ | unknown to HOPS | exclusion |
edge-cut width | ■ | upper bound | exclusion |
edge-treewidth | ■ | upper bound | exclusion |
edgeless | ■ | upper bound | avoids |
excluded minor | ■ | unknown to HOPS | avoids |
excluded planar minor | ■ | upper bound | avoids |
excluded top-minor | ■ | unknown to HOPS | avoids |
feedback edge set | ■ | upper bound | exclusion |
feedback vertex set | ■ | upper bound | exclusion |
flip-width | ■ | unknown to HOPS | unknown to HOPS |
forest | ■ | upper bound | exclusion |
genus | ■ | unknown to HOPS | exclusion |
grid | ■ | upper bound | exclusion |
h-index | ■ | unknown to HOPS | exclusion |
interval | ■ | upper bound | exclusion |
iterated type partitions | ■ | upper bound | exclusion |
linear clique-width | ■ | upper bound | exclusion |
linear forest | ■ | upper bound | exclusion |
linear NLC-width | ■ | upper bound | exclusion |
linear rank-width | ■ | upper bound | exclusion |
maximum clique | ■ | unknown to HOPS | exclusion |
maximum degree | ■ | unknown to HOPS | exclusion |
maximum independent set | ■ | unknown to HOPS | exclusion |
maximum induced matching | ■ | unknown to HOPS | exclusion |
maximum leaf number | ■ | upper bound | exclusion |
maximum matching | ■ | upper bound | exclusion |
maximum matching on bipartite graphs | ■ | upper bound | exclusion |
merge-width | ■ | unknown to HOPS | unknown to HOPS |
mim-width | ■ | unknown to HOPS | unknown to HOPS |
minimum degree | ■ | unknown to HOPS | exclusion |
mm-width | ■ | upper bound | exclusion |
modular-width | ■ | upper bound | exclusion |
module-width | ■ | upper bound | exclusion |
monadically dependent | ■ | unknown to HOPS | unknown to HOPS |
monadically stable | ■ | unknown to HOPS | unknown to HOPS |
neighborhood diversity | ■ | upper bound | exclusion |
NLC-width | ■ | upper bound | exclusion |
NLCT-width | ■ | upper bound | exclusion |
nowhere dense | ■ | unknown to HOPS | unknown to HOPS |
odd cycle transversal | ■ | unknown to HOPS | exclusion |
outerplanar | ■ | upper bound | exclusion |
overlap treewidth | ■ | upper bound | exclusion |
path | ■ | upper bound | exclusion |
pathwidth | ■ | upper bound | exclusion |
pathwidth+maxdegree | ■ | upper bound | exclusion |
perfect | ■ | upper bound | exclusion |
planar | ■ | unknown to HOPS | exclusion |
radius-inf flip-width | ■ | upper bound | exclusion |
radius-r flip-width | ■ | unknown to HOPS | unknown to HOPS |
rank-width | ■ | upper bound | exclusion |
series-parallel | ■ | upper bound | unknown to HOPS |
shrub-depth | ■ | upper bound | exclusion |
sim-width | ■ | unknown to HOPS | unknown to HOPS |
size | ■ | upper bound | exclusion |
slim tree-cut width | ■ | upper bound | exclusion |
sparse twin-width | ■ | unknown to HOPS | exclusion |
star | ■ | upper bound | exclusion |
stars | ■ | upper bound | exclusion |
strong coloring number | ■ | unknown to HOPS | exclusion |
strong d-coloring number | ■ | unknown to HOPS | unknown to HOPS |
strong inf-coloring number | ■ | upper bound | exclusion |
topological bandwidth | ■ | upper bound | exclusion |
tree | ■ | upper bound | exclusion |
tree-cut width | ■ | upper bound | exclusion |
tree-independence number | ■ | unknown to HOPS | unknown to HOPS |
tree-partition-width | ■ | upper bound | exclusion |
treebandwidth | ■ | upper bound | exclusion |
treedepth | ■ | upper bound | exclusion |
treelength | ■ | unknown to HOPS | unknown to HOPS |
treespan | ■ | upper bound | exclusion |
treewidth | ■ | upper bound | exclusion |
twin-cover number | ■ | upper bound | exclusion |
twin-width | ■ | unknown to HOPS | unknown to HOPS |
vertex connectivity | ■ | unknown to HOPS | unknown to HOPS |
vertex cover | ■ | upper bound | exclusion |
vertex integrity | ■ | upper bound | exclusion |
weak coloring number | ■ | unknown to HOPS | exclusion |
weak d-coloring number | ■ | unknown to HOPS | unknown to HOPS |
weak inf-coloring number | ■ | upper bound | exclusion |
weakly sparse | ■ | unknown to HOPS | unknown to HOPS |
weakly sparse and merge width | ■ | unknown to HOPS | exclusion |
Results
- 2012 Classes of graphs with small rank decompositions are χ-bounded by Dvořák, Král’
- page 2 : rank-width upper bounds chi-bounded by a constant – Theorem 1. For any $k$, the class of graphs with rank-width at most $k$ is $\chi$-bounded.
- unknown source
- perfect upper bounds chi-bounded by a constant
- clique-width upper bounds chi-bounded by a constant
- series-parallel upper bounds chi-bounded by a constant
- assumed
- chi-bounded is equivalent to chi-bounded – assumed