domino treewidth
tags: tree decomposition
functionally equivalent to: degree treewidth, treespan, contraction complexity
Definition: Minimum width of tree decompositions where every vertex is in at most 2 bags.
Relations
Other | Relation from | Relation to | |
---|---|---|---|
acyclic chromatic number | ■ | exclusion | upper bound |
admissibility | ■ | exclusion | upper bound |
arboricity | ■ | exclusion | upper bound |
average degree | ■ | exclusion | upper bound |
average distance | ■ | exclusion | exclusion |
bandwidth | ■ | upper bound | unknown to HOPS |
bipartite | ■ | unbounded | exclusion |
bipartite number | ■ | exclusion | exclusion |
bisection bandwidth | ■ | exclusion | unknown to HOPS |
block | ■ | unbounded | exclusion |
book thickness | ■ | exclusion | upper bound |
boolean width | ■ | exclusion | upper bound |
bounded components | ■ | upper bound | exclusion |
bounded expansion | ■ | exclusion | upper bound |
boxicity | ■ | exclusion | upper bound |
branch width | ■ | exclusion | upper bound |
c-closure | ■ | exclusion | upper bound |
carving-width | ■ | upper bound | unknown to HOPS |
chi-bounded | ■ | exclusion | upper bound |
chordal | ■ | unbounded | exclusion |
chordality | ■ | exclusion | upper bound |
chromatic number | ■ | exclusion | upper bound |
clique cover number | ■ | exclusion | exclusion |
clique-tree-width | ■ | exclusion | upper bound |
clique-width | ■ | exclusion | upper bound |
cluster | ■ | unbounded | exclusion |
co-cluster | ■ | unbounded | exclusion |
cograph | ■ | unbounded | exclusion |
complete | ■ | unbounded | exclusion |
connected | ■ | exclusion | avoids |
contraction complexity | ■ | upper bound | upper bound |
cutwidth | ■ | upper bound | unknown to HOPS |
cycle | ■ | upper bound | exclusion |
cycles | ■ | upper bound | exclusion |
d-admissibility | ■ | exclusion | upper bound |
d-path-free | ■ | exclusion | exclusion |
degeneracy | ■ | exclusion | upper bound |
degree treewidth | ■ | upper bound | upper bound |
diameter | ■ | exclusion | exclusion |
diameter+max degree | ■ | upper bound | exclusion |
distance to bipartite | ■ | exclusion | exclusion |
distance to block | ■ | exclusion | exclusion |
distance to bounded components | ■ | exclusion | exclusion |
distance to chordal | ■ | exclusion | exclusion |
distance to cluster | ■ | exclusion | exclusion |
distance to co-cluster | ■ | exclusion | exclusion |
distance to cograph | ■ | exclusion | exclusion |
distance to complete | ■ | exclusion | exclusion |
distance to edgeless | ■ | exclusion | exclusion |
distance to forest | ■ | exclusion | exclusion |
distance to interval | ■ | exclusion | exclusion |
distance to linear forest | ■ | exclusion | exclusion |
distance to maximum degree | ■ | exclusion | upper bound |
distance to outerplanar | ■ | exclusion | exclusion |
distance to perfect | ■ | exclusion | exclusion |
distance to planar | ■ | exclusion | exclusion |
distance to stars | ■ | exclusion | exclusion |
domatic number | ■ | exclusion | upper bound |
domination number | ■ | exclusion | exclusion |
domino treewidth | ■ | equal | equal |
edge clique cover number | ■ | exclusion | exclusion |
edge connectivity | ■ | exclusion | upper bound |
edge-cut width | ■ | exclusion | unknown to HOPS |
edge-treewidth | ■ | exclusion | upper bound |
edgeless | ■ | upper bound | avoids |
excluded minor | ■ | exclusion | unknown to HOPS |
excluded planar minor | ■ | unknown to HOPS | unknown to HOPS |
excluded top-minor | ■ | exclusion | upper bound |
feedback edge set | ■ | exclusion | exclusion |
feedback vertex set | ■ | exclusion | exclusion |
flip-width | ■ | exclusion | upper bound |
forest | ■ | unbounded | exclusion |
genus | ■ | exclusion | exclusion |
grid | ■ | unbounded | exclusion |
h-index | ■ | exclusion | upper bound |
interval | ■ | unbounded | exclusion |
iterated type partitions | ■ | exclusion | exclusion |
linear clique-width | ■ | exclusion | unknown to HOPS |
linear forest | ■ | upper bound | exclusion |
linear NLC-width | ■ | exclusion | unknown to HOPS |
linear rank-width | ■ | exclusion | unknown to HOPS |
maximum clique | ■ | exclusion | upper bound |
maximum degree | ■ | exclusion | upper bound |
maximum independent set | ■ | exclusion | exclusion |
maximum induced matching | ■ | exclusion | exclusion |
maximum leaf number | ■ | upper bound | exclusion |
maximum matching | ■ | exclusion | exclusion |
maximum matching on bipartite graphs | ■ | exclusion | exclusion |
merge-width | ■ | exclusion | upper bound |
mim-width | ■ | exclusion | upper bound |
minimum degree | ■ | exclusion | upper bound |
mm-width | ■ | exclusion | upper bound |
modular-width | ■ | exclusion | exclusion |
module-width | ■ | exclusion | upper bound |
monadically dependent | ■ | exclusion | upper bound |
monadically stable | ■ | exclusion | upper bound |
neighborhood diversity | ■ | exclusion | exclusion |
NLC-width | ■ | exclusion | upper bound |
NLCT-width | ■ | exclusion | upper bound |
nowhere dense | ■ | exclusion | upper bound |
odd cycle transversal | ■ | exclusion | exclusion |
outerplanar | ■ | unknown to HOPS | exclusion |
overlap treewidth | ■ | exclusion | upper bound |
path | ■ | upper bound | exclusion |
pathwidth | ■ | exclusion | unknown to HOPS |
pathwidth+maxdegree | ■ | upper bound | unknown to HOPS |
perfect | ■ | unbounded | exclusion |
planar | ■ | unbounded | exclusion |
radius-inf flip-width | ■ | exclusion | upper bound |
radius-r flip-width | ■ | exclusion | upper bound |
rank-width | ■ | exclusion | upper bound |
series-parallel | ■ | unknown to HOPS | unknown to HOPS |
shrub-depth | ■ | exclusion | unknown to HOPS |
sim-width | ■ | exclusion | upper bound |
size | ■ | upper bound | exclusion |
slim tree-cut width | ■ | exclusion | upper bound |
sparse twin-width | ■ | exclusion | upper bound |
star | ■ | unbounded | exclusion |
stars | ■ | unbounded | exclusion |
strong coloring number | ■ | exclusion | upper bound |
strong d-coloring number | ■ | exclusion | upper bound |
strong inf-coloring number | ■ | exclusion | upper bound |
topological bandwidth | ■ | unknown to HOPS | unknown to HOPS |
tree | ■ | unbounded | exclusion |
tree-cut width | ■ | exclusion | upper bound |
tree-independence number | ■ | exclusion | upper bound |
tree-partition-width | ■ | exclusion | upper bound |
treebandwidth | ■ | exclusion | upper bound |
treedepth | ■ | exclusion | exclusion |
treelength | ■ | exclusion | unknown to HOPS |
treespan | ■ | upper bound | upper bound |
treewidth | ■ | exclusion | upper bound |
twin-cover number | ■ | exclusion | exclusion |
twin-width | ■ | exclusion | upper bound |
vertex connectivity | ■ | exclusion | unknown to HOPS |
vertex cover | ■ | exclusion | exclusion |
vertex integrity | ■ | exclusion | exclusion |
weak coloring number | ■ | exclusion | upper bound |
weak d-coloring number | ■ | exclusion | upper bound |
weak inf-coloring number | ■ | exclusion | exclusion |
weakly sparse | ■ | exclusion | upper bound |
weakly sparse and merge width | ■ | exclusion | upper bound |
Results
- 2025 On a tree-based variant of bandwidth and forbidding simple topological minors by Jacob, Lochet, Paul
- page 37 : degree treewidth upper bounds domino treewidth by a linear function – Theorem 53. … $\max({\rm tw}(G),(\Delta(G)-1)/2) \le {\rm dtw}(G)$ … [this result is claimed to be in A note on domino treewidth by Bodlaender, didn’t see it there]
- page 38 : domino treewidth upper bounds treespan by a linear function – Claim 56. ${\rm ts}(G)$ \le 2 \cdot {\rm dtw}(G)
- 1999 A note on domino treewidth by Bodlaender
- page 4 : degree treewidth upper bounds domino treewidth by a linear function – Theorem 3.1 Let $G=(V,E)$ be a graph with treewidth at most $k$ and maximum degree at most $d$. Then the domino treewidth of $G$ is at most $(9k+7)d(d+1)-1$.
- page 7 : degree treewidth upper bounds domino treewidth by a linear function – Lemma 4.3 For all $d \ge 5$, $k \ge 2$, $k$ even, there exists a graph $G$ with treewidth at most $k$, maximum degree at most $d$, and domino treewidth at least $\frac{1}{12} kd-2$.
- 1997 Domino Treewidth by Bodlaender, Engelfriet
- page 3 : domino treewidth – A tree-decomposition … is a domino tree-decomposition, if … every vertex belongs to at most two sets $X_i$. The domino treewidth of a graph $G$ is the minimum width over all domino tree-decompositions of $G$.
- unknown source
- domino treewidth upper bounds slim tree-cut width by a computable function
- assumed
- domino treewidth is equivalent to domino treewidth – assumed