domination number
tags: covering vertices
Definition: Is the cardinality of a minimum vertex set such that its closed neighborhood contains all vertices of the graph.
Relations
Other | Relation from | Relation to | |
---|---|---|---|
acyclic chromatic number | ■ | exclusion | exclusion |
arboricity | ■ | exclusion | exclusion |
average degree | ■ | exclusion | exclusion |
average distance | ■ | exclusion | upper bound |
bandwidth | ■ | exclusion | exclusion |
bipartite | ■ | unbounded | exclusion |
bipartite number | ■ | exclusion | upper bound |
bisection bandwidth | ■ | exclusion | exclusion |
block | ■ | unbounded | exclusion |
book thickness | ■ | exclusion | exclusion |
boolean width | ■ | exclusion | exclusion |
bounded components | ■ | exclusion | exclusion |
boxicity | ■ | exclusion | exclusion |
branch width | ■ | exclusion | exclusion |
c-closure | ■ | exclusion | exclusion |
carving-width | ■ | exclusion | exclusion |
chordal | ■ | unbounded | exclusion |
chordality | ■ | exclusion | exclusion |
chromatic number | ■ | exclusion | exclusion |
clique cover number | ■ | upper bound | exclusion |
clique-tree-width | ■ | exclusion | exclusion |
clique-width | ■ | exclusion | exclusion |
cluster | ■ | unbounded | exclusion |
co-cluster | ■ | unbounded | exclusion |
cograph | ■ | unbounded | exclusion |
complete | ■ | upper bound | exclusion |
connected | ■ | unbounded | exclusion |
contraction complexity | ■ | exclusion | exclusion |
cutwidth | ■ | exclusion | exclusion |
cycle | ■ | unbounded | exclusion |
cycles | ■ | unbounded | exclusion |
d-path-free | ■ | exclusion | exclusion |
degeneracy | ■ | exclusion | exclusion |
degree treewidth | ■ | exclusion | exclusion |
diameter | ■ | exclusion | upper bound |
diameter+max degree | ■ | exclusion | exclusion |
disconnected | ■ | unknown to HOPS | exclusion |
disjoint cycles | ■ | unbounded | exclusion |
distance to bipartite | ■ | exclusion | exclusion |
distance to block | ■ | exclusion | exclusion |
distance to bounded components | ■ | exclusion | exclusion |
distance to chordal | ■ | exclusion | exclusion |
distance to cluster | ■ | exclusion | exclusion |
distance to co-cluster | ■ | exclusion | exclusion |
distance to cograph | ■ | exclusion | exclusion |
distance to complete | ■ | upper bound | exclusion |
distance to disconnected | ■ | exclusion | exclusion |
distance to edgeless | ■ | exclusion | exclusion |
distance to forest | ■ | exclusion | exclusion |
distance to interval | ■ | exclusion | exclusion |
distance to linear forest | ■ | exclusion | exclusion |
distance to maximum degree | ■ | exclusion | exclusion |
distance to outerplanar | ■ | exclusion | exclusion |
distance to perfect | ■ | exclusion | exclusion |
distance to planar | ■ | exclusion | exclusion |
distance to stars | ■ | exclusion | exclusion |
domatic number | ■ | exclusion | exclusion |
domination number | ■ | equal | equal |
edge clique cover number | ■ | exclusion | exclusion |
edge connectivity | ■ | exclusion | exclusion |
edgeless | ■ | unbounded | exclusion |
feedback edge set | ■ | exclusion | exclusion |
feedback vertex set | ■ | exclusion | exclusion |
forest | ■ | unbounded | exclusion |
genus | ■ | exclusion | exclusion |
girth | ■ | exclusion | upper bound |
grid | ■ | unbounded | exclusion |
h-index | ■ | exclusion | exclusion |
inf-flip-width | ■ | exclusion | exclusion |
interval | ■ | unbounded | exclusion |
iterated type partitions | ■ | exclusion | exclusion |
linear clique-width | ■ | exclusion | exclusion |
linear forest | ■ | unbounded | exclusion |
linear NLC-width | ■ | exclusion | exclusion |
linear rank-width | ■ | exclusion | exclusion |
maximum clique | ■ | exclusion | exclusion |
maximum degree | ■ | exclusion | exclusion |
maximum independent set | ■ | upper bound | exclusion |
maximum induced matching | ■ | exclusion | unknown to HOPS |
maximum leaf number | ■ | exclusion | exclusion |
maximum matching | ■ | exclusion | exclusion |
maximum matching on bipartite graphs | ■ | exclusion | exclusion |
mim-width | ■ | exclusion | unknown to HOPS |
minimum degree | ■ | exclusion | exclusion |
mm-width | ■ | exclusion | exclusion |
modular-width | ■ | exclusion | exclusion |
module-width | ■ | exclusion | exclusion |
neighborhood diversity | ■ | exclusion | exclusion |
NLC-width | ■ | exclusion | exclusion |
NLCT-width | ■ | exclusion | exclusion |
odd cycle transversal | ■ | exclusion | exclusion |
outerplanar | ■ | unbounded | exclusion |
path | ■ | unbounded | exclusion |
pathwidth | ■ | exclusion | exclusion |
pathwidth+maxdegree | ■ | exclusion | exclusion |
perfect | ■ | unbounded | exclusion |
planar | ■ | unbounded | exclusion |
radius-r flip-width | ■ | exclusion | unknown to HOPS |
rank-width | ■ | exclusion | exclusion |
shrub-depth | ■ | exclusion | exclusion |
sim-width | ■ | exclusion | unknown to HOPS |
size | ■ | upper bound | exclusion |
star | ■ | unknown to HOPS | exclusion |
stars | ■ | unbounded | exclusion |
topological bandwidth | ■ | exclusion | exclusion |
tree | ■ | unbounded | exclusion |
tree-independence number | ■ | exclusion | unknown to HOPS |
treedepth | ■ | exclusion | exclusion |
treelength | ■ | exclusion | upper bound |
treewidth | ■ | exclusion | exclusion |
twin-cover number | ■ | exclusion | exclusion |
twin-width | ■ | exclusion | exclusion |
vertex connectivity | ■ | exclusion | exclusion |
vertex cover | ■ | exclusion | exclusion |
vertex integrity | ■ | exclusion | exclusion |
Results
- 2022 Expanding the Graph Parameter Hierarchy by Tran
- page 29 : bounded edge clique cover number does not imply bounded domination number – Proposition 4.14. Edge Clique Cover Number is incomparable to Domination Number.
- page 29 : bounded domination number does not imply bounded edge clique cover number – Proposition 4.14. Edge Clique Cover Number is incomparable to Domination Number.
- assumed
- domination number is equivalent to domination number – assumed
- Comparing Graph Parameters by Schröder
- page 15 : bounded vertex cover does not imply bounded domination number – Proposition 3.5
- unknown source
- maximum independent set upper bounds domination number by a linear function – Every maximal independent set is also a dominating set because any undominated vertex could be added to the independent set.
- domination number upper bounds diameter by a linear function – An unbounded diameter implies a long path where no vertices that are more than $3$ apart may be dominated by the same dominating vertex, otherwise we could shorten the path. Hence, the number of dominating vertices is also unbounded.
- graph class cluster has unbounded domination number
- graph class edgeless has unbounded domination number
- bounded domination number does not imply bounded maximum independent set