distance to complete
providers: ISGCI
Relations
Other | Relation from | Relation to | |
---|---|---|---|
acyclic chromatic number | ■ | exclusion | exclusion |
arboricity | ■ | exclusion | exclusion |
average degree | ■ | exclusion | exclusion |
average distance | ■ | exclusion | upper bound |
bandwidth | ■ | exclusion | exclusion |
bipartite | ■ | unbounded | exclusion |
bipartite number | ■ | exclusion | upper bound |
bisection bandwidth | ■ | exclusion | exclusion |
block | ■ | unbounded | exclusion |
book thickness | ■ | exclusion | exclusion |
boolean width | ■ | exclusion | upper bound |
bounded components | ■ | exclusion | exclusion |
boxicity | ■ | exclusion | upper bound |
branch width | ■ | exclusion | exclusion |
c-closure | ■ | exclusion | exclusion |
carving-width | ■ | exclusion | exclusion |
chordal | ■ | unbounded | exclusion |
chordality | ■ | exclusion | upper bound |
chromatic number | ■ | exclusion | exclusion |
clique cover number | ■ | exclusion | upper bound |
clique-tree-width | ■ | exclusion | upper bound |
clique-width | ■ | exclusion | upper bound |
cluster | ■ | unbounded | exclusion |
co-cluster | ■ | unbounded | exclusion |
cograph | ■ | unbounded | exclusion |
complete | ■ | upper bound | exclusion |
connected | ■ | unbounded | exclusion |
contraction complexity | ■ | exclusion | exclusion |
cutwidth | ■ | exclusion | exclusion |
cycle | ■ | unbounded | exclusion |
cycles | ■ | unbounded | exclusion |
d-path-free | ■ | exclusion | exclusion |
degeneracy | ■ | exclusion | exclusion |
degree treewidth | ■ | exclusion | exclusion |
diameter | ■ | exclusion | upper bound |
diameter+max degree | ■ | exclusion | exclusion |
disconnected | ■ | unknown to HOPS | exclusion |
disjoint cycles | ■ | unbounded | exclusion |
distance to bipartite | ■ | exclusion | exclusion |
distance to block | ■ | exclusion | upper bound |
distance to bounded components | ■ | exclusion | exclusion |
distance to chordal | ■ | exclusion | upper bound |
distance to cluster | ■ | exclusion | upper bound |
distance to co-cluster | ■ | exclusion | upper bound |
distance to cograph | ■ | exclusion | upper bound |
distance to complete | ■ | equal | equal |
distance to disconnected | ■ | exclusion | exclusion |
distance to edgeless | ■ | exclusion | exclusion |
distance to forest | ■ | exclusion | exclusion |
distance to interval | ■ | exclusion | upper bound |
distance to linear forest | ■ | exclusion | exclusion |
distance to maximum degree | ■ | exclusion | exclusion |
distance to outerplanar | ■ | exclusion | exclusion |
distance to perfect | ■ | exclusion | upper bound |
distance to planar | ■ | exclusion | exclusion |
distance to stars | ■ | exclusion | exclusion |
domatic number | ■ | exclusion | exclusion |
domination number | ■ | exclusion | upper bound |
edge clique cover number | ■ | exclusion | upper bound |
edge connectivity | ■ | exclusion | exclusion |
edgeless | ■ | unbounded | exclusion |
feedback edge set | ■ | exclusion | exclusion |
feedback vertex set | ■ | exclusion | exclusion |
forest | ■ | unbounded | exclusion |
genus | ■ | exclusion | exclusion |
girth | ■ | exclusion | upper bound |
grid | ■ | unbounded | exclusion |
h-index | ■ | exclusion | exclusion |
inf-flip-width | ■ | exclusion | upper bound |
interval | ■ | unbounded | exclusion |
iterated type partitions | ■ | exclusion | upper bound |
linear clique-width | ■ | exclusion | upper bound |
linear forest | ■ | unbounded | exclusion |
linear NLC-width | ■ | exclusion | upper bound |
linear rank-width | ■ | exclusion | upper bound |
maximum clique | ■ | exclusion | exclusion |
maximum degree | ■ | exclusion | exclusion |
maximum independent set | ■ | exclusion | upper bound |
maximum induced matching | ■ | exclusion | upper bound |
maximum leaf number | ■ | exclusion | exclusion |
maximum matching | ■ | exclusion | exclusion |
maximum matching on bipartite graphs | ■ | exclusion | exclusion |
mim-width | ■ | exclusion | upper bound |
minimum degree | ■ | exclusion | exclusion |
mm-width | ■ | exclusion | exclusion |
modular-width | ■ | exclusion | upper bound |
module-width | ■ | exclusion | upper bound |
neighborhood diversity | ■ | exclusion | upper bound |
NLC-width | ■ | exclusion | upper bound |
NLCT-width | ■ | exclusion | upper bound |
odd cycle transversal | ■ | exclusion | exclusion |
outerplanar | ■ | unbounded | exclusion |
path | ■ | unbounded | exclusion |
pathwidth | ■ | exclusion | exclusion |
pathwidth+maxdegree | ■ | exclusion | exclusion |
perfect | ■ | unbounded | exclusion |
planar | ■ | unbounded | exclusion |
radius-r flip-width | ■ | exclusion | upper bound |
rank-width | ■ | exclusion | upper bound |
shrub-depth | ■ | exclusion | upper bound |
sim-width | ■ | exclusion | upper bound |
size | ■ | upper bound | exclusion |
star | ■ | unknown to HOPS | exclusion |
stars | ■ | unbounded | exclusion |
topological bandwidth | ■ | exclusion | exclusion |
tree | ■ | unbounded | exclusion |
tree-independence number | ■ | exclusion | unknown to HOPS |
treedepth | ■ | exclusion | exclusion |
treelength | ■ | exclusion | upper bound |
treewidth | ■ | exclusion | exclusion |
twin-cover number | ■ | exclusion | exclusion |
twin-width | ■ | exclusion | upper bound |
vertex connectivity | ■ | exclusion | exclusion |
vertex cover | ■ | exclusion | exclusion |
vertex integrity | ■ | exclusion | exclusion |
Results
- 2022 Expanding the Graph Parameter Hierarchy by Tran
- page 18 : bounded twin-cover number does not imply bounded distance to complete – Observation 3.3. Twin Cover Number is incomparable to Distance to Clique.
- page 18 : bounded distance to complete does not imply bounded twin-cover number – Observation 3.3. Twin Cover Number is incomparable to Distance to Clique.
- page 23 : distance to complete upper bounds edge clique cover number by a polynomial function – Proposition 4.2. Disatnce to Clique strictly upper bounds Edge Clique Cover Number.
- page 23 : bounded edge clique cover number does not imply bounded distance to complete – Proposition 4.2. Disatnce to Clique strictly upper bounds Edge Clique Cover Number.
- page 34 : bounded c-closure does not imply bounded distance to complete – Proposition 5.4. $c$-Closure is incomparable to Distance to Clique.
- page 34 : bounded distance to complete does not imply bounded c-closure – Proposition 5.4. $c$-Closure is incomparable to Distance to Clique.
- assumed
- complete upper bounds distance to complete by a constant – by definition
- size upper bounds distance to complete by a linear function – By definition
- distance to complete is equivalent to distance to complete – assumed
- Comparing Graph Parameters by Schröder
- page 16 : bounded distance to complete does not imply bounded maximum clique – Proposition 3.7
- page 16 : bounded distance to complete does not imply bounded domatic number – Proposition 3.7
- page 16 : bounded distance to complete does not imply bounded distance to disconnected – Proposition 3.8
- unknown source
- distance to complete upper bounds clique cover number by a linear function – We cover the $k$ vertices of the modulator by cliques of size $1$ and cover the remaining clique by another one.
- distance to complete upper bounds edge clique cover number by a polynomial function – Cover the remaining clique, cover each modulator vertex and its neighborhood outside of it with another clique, cover each edge within the modulator by its own edge.