distance to complete
equivalent to: distance to complete
providers: ISGCI
Relations
Other | Relation from | Relation to |
---|---|---|
acyclic chromatic number | exclusion | exclusion |
arboricity | exclusion | exclusion |
average degree | exclusion | exclusion |
average distance | exclusion | upper bound |
bandwidth | exclusion | exclusion |
bipartite | unbounded | exclusion |
bipartite number | exclusion | upper bound |
bisection bandwidth | exclusion | exclusion |
block | unbounded | unknown to HOPS |
book thickness | exclusion | exclusion |
boolean width | exclusion | upper bound |
bounded components | exclusion | exclusion |
boxicity | exclusion | upper bound |
branch width | exclusion | exclusion |
c-closure | exclusion | exclusion |
carving-width | exclusion | exclusion |
chordal | unbounded | unknown to HOPS |
chordality | exclusion | upper bound |
chromatic number | exclusion | exclusion |
clique cover number | exclusion | upper bound |
clique-tree-width | exclusion | upper bound |
clique-width | exclusion | upper bound |
cluster | unbounded | exclusion |
co-cluster | unbounded | unknown to HOPS |
cograph | unbounded | unknown to HOPS |
complete | constant | exclusion |
connected | unbounded | unknown to HOPS |
cutwidth | exclusion | exclusion |
cycle | unbounded | exclusion |
cycles | unbounded | exclusion |
d-path-free | exclusion | exclusion |
degeneracy | exclusion | exclusion |
degree treewidth | exclusion | exclusion |
diameter | exclusion | upper bound |
diameter+max degree | exclusion | exclusion |
disjoint cycles | unbounded | exclusion |
distance to bipartite | exclusion | exclusion |
distance to block | exclusion | upper bound |
distance to bounded components | exclusion | exclusion |
distance to chordal | exclusion | upper bound |
distance to cluster | exclusion | upper bound |
distance to co-cluster | exclusion | upper bound |
distance to cograph | exclusion | upper bound |
distance to edgeless | exclusion | exclusion |
distance to forest | exclusion | exclusion |
distance to interval | exclusion | upper bound |
distance to linear forest | exclusion | exclusion |
distance to maximum degree | exclusion | exclusion |
distance to outerplanar | exclusion | exclusion |
distance to perfect | exclusion | upper bound |
distance to planar | exclusion | unknown to HOPS |
distance to stars | exclusion | exclusion |
domatic number | exclusion | exclusion |
domination number | exclusion | upper bound |
edge clique cover number | exclusion | upper bound |
edge connectivity | exclusion | exclusion |
edgeless | unbounded | exclusion |
feedback edge set | exclusion | exclusion |
feedback vertex set | exclusion | exclusion |
forest | unbounded | exclusion |
genus | exclusion | exclusion |
girth | exclusion | upper bound |
grid | unbounded | exclusion |
h-index | exclusion | exclusion |
inf-flip-width | exclusion | upper bound |
interval | unbounded | unknown to HOPS |
iterated type partitions | exclusion | upper bound |
linear clique-width | exclusion | upper bound |
linear forest | unbounded | exclusion |
linear NLC-width | exclusion | upper bound |
linear rank-width | exclusion | upper bound |
maximum clique | exclusion | exclusion |
maximum degree | exclusion | exclusion |
maximum independent set | exclusion | upper bound |
maximum induced matching | exclusion | upper bound |
maximum leaf number | exclusion | exclusion |
maximum matching | exclusion | exclusion |
maximum matching on bipartite graphs | exclusion | exclusion |
mim-width | exclusion | upper bound |
minimum degree | exclusion | exclusion |
mm-width | exclusion | exclusion |
modular-width | exclusion | upper bound |
module-width | exclusion | upper bound |
neighborhood diversity | exclusion | upper bound |
NLC-width | exclusion | upper bound |
NLCT-width | exclusion | upper bound |
odd cycle transversal | exclusion | exclusion |
outerplanar | unbounded | exclusion |
path | unbounded | exclusion |
pathwidth | exclusion | exclusion |
pathwidth+maxdegree | exclusion | exclusion |
perfect | unbounded | unknown to HOPS |
planar | unbounded | exclusion |
radius-r flip-width | exclusion | upper bound |
rank-width | exclusion | upper bound |
shrub-depth | exclusion | upper bound |
sim-width | exclusion | upper bound |
star | unknown to HOPS | exclusion |
stars | unbounded | exclusion |
topological bandwidth | exclusion | exclusion |
tree | unbounded | exclusion |
tree-independence number | exclusion | unknown to HOPS |
treedepth | exclusion | exclusion |
treelength | exclusion | upper bound |
treewidth | exclusion | exclusion |
twin-cover number | exclusion | exclusion |
twin-width | exclusion | upper bound |
vertex connectivity | unknown to HOPS | exclusion |
vertex cover | exclusion | exclusion |
vertex integrity | exclusion | exclusion |
Results
- 2022 Expanding the Graph Parameter Hierarchy by Tran
- page 18 : bounded twin-cover number does not imply bounded distance to complete – Observation 3.3. Twin Cover Number is incomparable to Distance to Clique.
- page 18 : bounded distance to complete does not imply bounded twin-cover number – Observation 3.3. Twin Cover Number is incomparable to Distance to Clique.
- page 23 : distance to complete upper bounds edge clique cover number by a polynomial function – Proposition 4.2. Disatnce to Clique strictly upper bounds Edge Clique Cover Number.
- page 23 : bounded edge clique cover number does not imply bounded distance to complete – Proposition 4.2. Disatnce to Clique strictly upper bounds Edge Clique Cover Number.
- page 34 : bounded c-closure does not imply bounded distance to complete – Proposition 5.4. $c$-Closure is incomparable to Distance to Clique.
- page 34 : bounded distance to complete does not imply bounded c-closure – Proposition 5.4. $c$-Closure is incomparable to Distance to Clique.
- Comparing Graph Parameters by Schröder
- page 16 : bounded distance to complete does not imply bounded maximum clique – Proposition 3.7
- page 16 : bounded distance to complete does not imply bounded domatic number – Proposition 3.7
- page 16 : bounded distance to complete does not imply bounded vertex connectivity – Proposition 3.8
- unknown source
- distance to complete upper bounds clique cover number by a linear function – We cover the $k$ vertices of the modulator by cliques of size $1$ and cover the remaining clique by another one.
- distance to complete upper bounds edge clique cover number by a polynomial function – Cover the remaining clique, cover each modulator vertex and its neighborhood outside of it with another clique, cover each edge within the modulator by its own edge.
- assumed
- graph class complete has constant distance to complete – by definition