c-closure
Definition: Minimum $c$ such that if vertices share at least $c$ neighbors, then they are adjacent.
Relations
| Other | Relation from | Relation to | |
|---|---|---|---|
| acyclic chromatic number | ■ | exclusion | exclusion |
| admissibility | ■ | exclusion | exclusion |
| arboricity | ■ | exclusion | exclusion |
| average degree | ■ | exclusion | exclusion |
| average distance | ■ | exclusion | exclusion |
| bandwidth | ■ | upper bound | exclusion |
| bipartite | ■ | unknown to HOPS | exclusion |
| bipartite number | ■ | exclusion | exclusion |
| bisection bandwidth | ■ | exclusion | exclusion |
| block | ■ | unknown to HOPS | exclusion |
| book thickness | ■ | exclusion | exclusion |
| boolean width | ■ | exclusion | exclusion |
| bounded components | ■ | upper bound | exclusion |
| bounded expansion | ■ | exclusion | avoids |
| boxicity | ■ | exclusion | exclusion |
| branch width | ■ | exclusion | exclusion |
| c-closure | ■ | equal | equal |
| carving-width | ■ | upper bound | exclusion |
| chi-bounded | ■ | exclusion | unknown to HOPS |
| chordal | ■ | unknown to HOPS | exclusion |
| chordality | ■ | exclusion | unknown to HOPS |
| chromatic number | ■ | exclusion | exclusion |
| clique cover number | ■ | exclusion | exclusion |
| clique-tree-width | ■ | exclusion | exclusion |
| clique-width | ■ | exclusion | exclusion |
| cluster | ■ | unknown to HOPS | exclusion |
| co-cluster | ■ | unknown to HOPS | exclusion |
| cograph | ■ | unknown to HOPS | exclusion |
| complete | ■ | unknown to HOPS | exclusion |
| connected | ■ | unknown to HOPS | avoids |
| contraction complexity | ■ | upper bound | exclusion |
| cutwidth | ■ | upper bound | exclusion |
| cycle | ■ | upper bound | exclusion |
| cycles | ■ | upper bound | exclusion |
| d-admissibility | ■ | exclusion | unknown to HOPS |
| d-path-free | ■ | exclusion | exclusion |
| degeneracy | ■ | exclusion | exclusion |
| degree treewidth | ■ | upper bound | exclusion |
| diameter | ■ | exclusion | exclusion |
| diameter+max degree | ■ | upper bound | exclusion |
| distance to bipartite | ■ | exclusion | exclusion |
| distance to block | ■ | exclusion | exclusion |
| distance to bounded components | ■ | exclusion | exclusion |
| distance to chordal | ■ | exclusion | exclusion |
| distance to cluster | ■ | exclusion | exclusion |
| distance to co-cluster | ■ | exclusion | exclusion |
| distance to cograph | ■ | exclusion | exclusion |
| distance to complete | ■ | exclusion | exclusion |
| distance to edgeless | ■ | exclusion | exclusion |
| distance to forest | ■ | exclusion | exclusion |
| distance to interval | ■ | exclusion | exclusion |
| distance to linear forest | ■ | exclusion | exclusion |
| distance to maximum degree | ■ | exclusion | exclusion |
| distance to outerplanar | ■ | exclusion | exclusion |
| distance to perfect | ■ | exclusion | exclusion |
| distance to planar | ■ | exclusion | exclusion |
| distance to stars | ■ | exclusion | exclusion |
| domatic number | ■ | exclusion | exclusion |
| domination number | ■ | exclusion | exclusion |
| domino treewidth | ■ | upper bound | exclusion |
| edge clique cover number | ■ | exclusion | exclusion |
| edge connectivity | ■ | exclusion | unknown to HOPS |
| edge-cut width | ■ | unknown to HOPS | exclusion |
| edge-treewidth | ■ | unknown to HOPS | exclusion |
| edgeless | ■ | upper bound | avoids |
| excluded minor | ■ | exclusion | avoids |
| excluded planar minor | ■ | unknown to HOPS | avoids |
| excluded top-minor | ■ | exclusion | avoids |
| feedback edge set | ■ | upper bound | exclusion |
| feedback vertex set | ■ | exclusion | exclusion |
| flip-width | ■ | exclusion | unknown to HOPS |
| forest | ■ | upper bound | exclusion |
| genus | ■ | exclusion | exclusion |
| grid | ■ | upper bound | exclusion |
| h-index | ■ | exclusion | exclusion |
| interval | ■ | unknown to HOPS | exclusion |
| iterated type partitions | ■ | exclusion | exclusion |
| linear clique-width | ■ | exclusion | exclusion |
| linear forest | ■ | upper bound | exclusion |
| linear NLC-width | ■ | exclusion | exclusion |
| linear rank-width | ■ | exclusion | exclusion |
| maximum clique | ■ | exclusion | exclusion |
| maximum degree | ■ | upper bound | exclusion |
| maximum independent set | ■ | exclusion | exclusion |
| maximum induced matching | ■ | exclusion | exclusion |
| maximum leaf number | ■ | upper bound | exclusion |
| maximum matching | ■ | exclusion | exclusion |
| maximum matching on bipartite graphs | ■ | unknown to HOPS | exclusion |
| merge-width | ■ | exclusion | unknown to HOPS |
| mim-width | ■ | exclusion | unknown to HOPS |
| minimum degree | ■ | exclusion | exclusion |
| mm-width | ■ | exclusion | exclusion |
| modular-width | ■ | exclusion | exclusion |
| module-width | ■ | exclusion | exclusion |
| monadically dependent | ■ | exclusion | unknown to HOPS |
| monadically stable | ■ | exclusion | unknown to HOPS |
| neighborhood diversity | ■ | exclusion | exclusion |
| NLC-width | ■ | exclusion | exclusion |
| NLCT-width | ■ | exclusion | exclusion |
| nowhere dense | ■ | exclusion | unknown to HOPS |
| odd cycle transversal | ■ | exclusion | exclusion |
| outerplanar | ■ | unknown to HOPS | exclusion |
| overlap treewidth | ■ | unknown to HOPS | exclusion |
| path | ■ | upper bound | exclusion |
| pathwidth | ■ | exclusion | exclusion |
| pathwidth+maxdegree | ■ | upper bound | exclusion |
| perfect | ■ | unknown to HOPS | exclusion |
| planar | ■ | unknown to HOPS | exclusion |
| radius-inf flip-width | ■ | exclusion | exclusion |
| radius-r flip-width | ■ | exclusion | unknown to HOPS |
| rank-width | ■ | exclusion | exclusion |
| series-parallel | ■ | unknown to HOPS | unknown to HOPS |
| shrub-depth | ■ | exclusion | exclusion |
| sim-width | ■ | exclusion | unknown to HOPS |
| size | ■ | upper bound | exclusion |
| slim tree-cut width | ■ | unknown to HOPS | exclusion |
| sparse twin-width | ■ | exclusion | exclusion |
| star | ■ | upper bound | exclusion |
| stars | ■ | upper bound | exclusion |
| strong coloring number | ■ | exclusion | exclusion |
| strong d-coloring number | ■ | exclusion | unknown to HOPS |
| strong inf-coloring number | ■ | exclusion | exclusion |
| topological bandwidth | ■ | unknown to HOPS | exclusion |
| tree | ■ | upper bound | exclusion |
| tree-cut width | ■ | unknown to HOPS | exclusion |
| tree-independence number | ■ | exclusion | unknown to HOPS |
| tree-partition-width | ■ | unknown to HOPS | exclusion |
| treebandwidth | ■ | unknown to HOPS | exclusion |
| treedepth | ■ | exclusion | exclusion |
| treelength | ■ | exclusion | unknown to HOPS |
| treespan | ■ | upper bound | exclusion |
| treewidth | ■ | exclusion | exclusion |
| twin-cover number | ■ | exclusion | exclusion |
| twin-width | ■ | exclusion | exclusion |
| vertex connectivity | ■ | exclusion | exclusion |
| vertex cover | ■ | exclusion | exclusion |
| vertex integrity | ■ | exclusion | exclusion |
| weak coloring number | ■ | exclusion | exclusion |
| weak d-coloring number | ■ | exclusion | unknown to HOPS |
| weak inf-coloring number | ■ | exclusion | exclusion |
| weakly sparse | ■ | exclusion | unknown to HOPS |
| weakly sparse and merge width | ■ | exclusion | exclusion |
Results
- 2022 Expanding the Graph Parameter Hierarchy by Tran
- page 14 : c-closure – The c-closure $\mathrm{cc}(G)$ of a graph $G$ is the smallest number $c$ such that any pair of vertices $v,w \in V(G)$ with $|N_G(v) \cap N_G(w)| \ge c$ is adjacent. …
- page 32 : maximum degree upper bounds c-closure by a computable function – Proposition 5.1. Maximum Degree strictly upper bounds $c$-Closure.
- page 32 : graph classes with bounded c-closure are not bounded maximum degree – Proposition 5.1. Maximum Degree strictly upper bounds $c$-Closure.
- page 32 : feedback edge set upper bounds c-closure by a computable function – Theorem 5.2. Feedback Edge Number strictly upper bounds $c$-Closure.
- page 32 : graph classes with bounded c-closure are not bounded feedback edge set – Theorem 5.2. Feedback Edge Number strictly upper bounds $c$-Closure.
- page 34 : graph classes with bounded c-closure are not bounded vertex cover – Proposition 5.3. $c$-Closure is incomparable to Vertex Cover Number.
- page 34 : graph classes with bounded vertex cover are not bounded c-closure – Proposition 5.3. $c$-Closure is incomparable to Vertex Cover Number.
- page 34 : graph classes with bounded c-closure are not bounded distance to complete – Proposition 5.4. $c$-Closure is incomparable to Distance to Clique.
- page 34 : graph classes with bounded distance to complete are not bounded c-closure – Proposition 5.4. $c$-Closure is incomparable to Distance to Clique.
- page 34 : graph classes with bounded c-closure are not bounded bisection bandwidth – Proposition 5.5. $c$-Closure is incomparable to Bisection Width.
- page 34 : graph classes with bounded bisection bandwidth are not bounded c-closure – Proposition 5.5. $c$-Closure is incomparable to Bisection Width.
- page 34 : graph classes with bounded c-closure are not bounded genus – Proposition 5.6. $c$-Closure is incomparable to Genus.
- page 34 : graph classes with bounded genus are not bounded c-closure – Proposition 5.6. $c$-Closure is incomparable to Genus.
- page 34 : graph classes with bounded c-closure are not bounded vertex connectivity – Observation 5.7. $c$-Closure is incomparable to Distance to Disconnected, Domatic Number and Maximum Clique.
- page 34 : graph classes with bounded vertex connectivity are not bounded c-closure – Observation 5.7. $c$-Closure is incomparable to Distance to Disconnected, Domatic Number and Maximum Clique.
- page 34 : graph classes with bounded c-closure are not bounded domatic number – Observation 5.7. $c$-Closure is incomparable to Distance to Disconnected, Domatic Number and Maximum Clique.
- page 34 : graph classes with bounded domatic number are not bounded c-closure – Observation 5.7. $c$-Closure is incomparable to Distance to Disconnected, Domatic Number and Maximum Clique.
- page 34 : graph classes with bounded c-closure are not bounded maximum clique – Observation 5.7. $c$-Closure is incomparable to Distance to Disconnected, Domatic Number and Maximum Clique.
- page 34 : graph classes with bounded maximum clique are not bounded c-closure – Observation 5.7. $c$-Closure is incomparable to Distance to Disconnected, Domatic Number and Maximum Clique.
- page 35 : graph classes with bounded c-closure are not bounded boxicity – Proposition 5.8. $c$-Closure is incomparable to Boxicity.
- page 35 : graph classes with bounded boxicity are not bounded c-closure – Proposition 5.8. $c$-Closure is incomparable to Boxicity.
- assumed
- unknown source
- maximum degree upper bounds c-closure by a computable function
- feedback edge set upper bounds c-closure by a computable function