000 | 2025 | ████░░░░░ | On a tree-based variant of bandwidth and forbidding simple topological minors by Jacob, Lochet, Paul |
001 | 2024 | ███░░░░░░ | Parameterized complexity for iterated type partitions and modular-width by Cordasco, Gargano, Rescigno |
002 | 2024 | ██░░░░░░░ | Twin-width of graphs on surfaces by Kráľ, Pekárková, Štorgel |
003 | 2023 | █░░░░░░░░ | On Algorithmic Applications of Sim-Width and Mim-Width of $(H_1,H_2)$-Free Graphs by Munaro, Yang |
004 | 2024 | ███████░░ | Merge-width and First-Order Model Checking by Dreier, Toruńczyk |
005 | 2024 | █████░░░░ | Slim Tree-Cut Width by Ganian, Korchemna |
006 | 2023 | ███████░░ | Flip-width: Cops and Robber on dense graphs by Toruńczyk |
007 | 2022 | ███████░░ | Expanding the Graph Parameter Hierarchy by Tran |
008 | 2022 | ████░░░░░ | Edge-Cut Width: An Algorithmically Driven Analogue of Treewidth Based on Edge Cuts by Brand, Ceylan, Ganian, Hatschka, Korchemna |
009 | 2021 | ██████░░░ | Twin-width I: Tractable FO Model Checking by Bonnet, Kim, Thomassé, Watrigant |
010 | 2022 | ██████░░░ | Excluding a Ladder by Huynh, Joret, Micek, Seweryn, Wollan |
011 | unknown | ███████░░ | Comparing Graph Parameters by Schröder |
012 | 2020 | █░░░░░░░░ | Mim-Width I. Induced path problems by Jaffke, Kwon, Telle |
013 | 2019 | ███████░░ | The Graph Parameter Hierarchy by Sorge |
014 | 2019 | █████░░░░ | Shrub-depth: Capturing Height of Dense Graphs by Ganian, Hliněný, Nešetřil, Obdržálek, Ossona de Mendez |
015 | 2018 | █░░░░░░░░ | A systematic comparison of graph parameters by Frömmrich |
016 | 2017 | ███████░░ | Graph Theory by Diestel |
017 | 2015 | █████████ | Parameterized Algorithms by Cygan, Fomin, Kowalik, Lokshtanov, Marx, Pilipczuk, Pilipczuk, Saurabh |
018 | 2015 | ████░░░░░ | Improving Vertex Cover as a Graph Parameter by Ganian |
019 | 2015 | ██░░░░░░░ | Linear rank-width and linear clique-width of trees by Adler, Kanté |
020 | 2015 | ███░░░░░░ | The structure of graphs not admitting a fixed immersion by Wollan |
021 | 2013 | █░░░░░░░░ | The Power of Data Reduction: Kernels for Fundamental Graph Problems by Jansen |
022 | 2013 | █░░░░░░░░ | Characterizing graphs of small carving-width by Belmonte, van ’t Hof, Kamiński, Paulusma, Thilikos |
023 | 2013 | ███░░░░░░ | Parameterized Algorithms for Modular-Width by Gajarský, Lampis, Ordyniak |
024 | 2012 | ███░░░░░░ | New Width Parameters of Graphs by Vatshelle |
025 | 2012 | ████░░░░░ | Twin-Cover: Beyond Vertex Cover in Parameterized Algorithmics by Ganian |
026 | 2012 | ████░░░░░ | Classes of graphs with small rank decompositions are χ-bounded by Dvořák, Král’ |
027 | 2012 | █░░░░░░░░ | Algorithmic Meta-theorems for Restrictions of Treewidth by Lampis |
028 | 2011 | ████░░░░░ | Boolean-width of graphs by Bui-Xuan, Telle, Vatshelle |
029 | 2011 | ██░░░░░░░ | Chordal Bipartite Graphs with High Boxicity by Chandran, Francis, Mathew |
030 | 2010 | ███████░░ | Comparing 17 graph parameters by Sasák |
031 | 2010 | █░░░░░░░░ | The rank-width of the square grid by Jelínek |
032 | 2009 | ███░░░░░░ | On tree-partition-width by Wood |
033 | 2009 | ██░░░░░░░ | Clique-Width is NP -Complete by Fellows, Rosamond, Rotics, Szeider |
034 | 2008 | ███░░░░░░ | Grad and classes with bounded expansion II. Algorithmic aspects by Nešetřil, Ossona de Mendez |
035 | 2008 | ██░░░░░░░ | Spanning Trees with Many Leaves and Average Distance by DeLaViña, Waller |
036 | 2008 | ██░░░░░░░ | Simulating Quantum Computation by Contracting Tensor Networks by Markov, Shi |
037 | 2007 | ████░░░░░ | Graph Treewidth and Geometric Thickness Parameters by Dujmovic, Wood |
038 | 2006 | ████░░░░░ | Approximating clique-width and branch-width by Oum, Seymour |
039 | 2005 | ███░░░░░░ | On the relationship between NLC-width and linear NLC-width by Gurski, Wanke |
040 | 2005 | ████░░░░░ | Graph Searching, Elimination Trees, and a Generalization of Bandwidth by Fomin, Heggernes, Telle |
041 | 2004 | ███░░░░░░ | Track Layouts of Graphs by Dujmović, Pór, Wood |
042 | 2000 | █████░░░░ | Upper bounds to the clique width of graphs by Courcelle, Olariu |
043 | 1999 | ████░░░░░ | A note on domino treewidth by Bodlaender |
044 | 1998 | ███░░░░░░ | Clique-decomposition, NLC-decomposition and modular decomposition—relationships and results for random graphs by Johansson |
045 | 1998 | ██████░░░ | A partial $k$-arboretum of graphs with bounded treewidth by Bodlaender |
046 | 1997 | █████░░░░ | Domino Treewidth by Bodlaender, Engelfriet |
047 | 1994 | ███░░░░░░ | k-NLC graphs and polynomial algorithms by Wanke |
048 | 1993 | █████░░░░ | The Pathwidth and Treewidth of Cographs by Bodlaender, Möhring |
049 | 1991 | ███████░░ | Graph minors. X. Obstructions to tree-decomposition by Robertson, Seymour |
050 | 1986 | ███░░░░░░ | Graph minors. V. Excluding a planar graph by Robertson, Seymour |
051 | 1994 | ██░░░░░░░ | Genus $g$ Graphs Have Pagenumber $O(\sqrt g)$ by Malitz |
052 | 1993 | ████░░░░░ | On the chordality of a graph by McKee, Scheinerman |
053 | 1989 | ███░░░░░░ | On dimensional properties of graphs by Cozzens, Roberts |
054 | 1986 | ████████░ | Graph minors. II. Algorithmic aspects of tree-width by Robertson, Seymour |
055 | 1988 | █░░░░░░░░ | The average distanceisnot morethan the independence number by Chung |
056 | 1985 | █░░░░░░░░ | On the Cutwidth and the Topological Bandwidth of a Tree by Chung |