HOPS web view

This page lists:


Parameters

Simplified hierarchy

This browser does not support PDFs. Please download the PDF to view it: Download PDF.

This browser does not support PDFs. Please download the PDF to view it: Download PDF.

All parameters in HOPS

Parameter ⮁Relevance ⮁
acyclic chromatic number█████░░░░
arboricity█████░░░░
average degree██░░░░░░░
average distance███░░░░░░
bandwidth█████░░░░
bisection bandwidth████░░░░░
book thickness████░░░░░
boolean width█████░░░░
bounded components███░░░░░░
boxicity██████░░░
branch width█████░░░░
c-closure░░░░░░░░░
carving-width███░░░░░░
chordality████░░░░░
chromatic number█████░░░░
clique cover number█████░░░░
clique-tree-width██░░░░░░░
clique-width███████░░
cutwidth████░░░░░
d-path-free██░░░░░░░
degeneracy██████░░░
degree treewidth██████░░░
diameter██████░░░
distance to bipartite██████░░░
distance to block████░░░░░
distance to bounded components████░░░░░
distance to chordal████░░░░░
distance to cluster█████░░░░
distance to co-cluster█████░░░░
distance to cograph█████░░░░
distance to complete██████░░░
distance to edgeless█░░░░░░░░
distance to forest█████░░░░
distance to interval███░░░░░░
distance to linear forest████░░░░░
distance to maximum degree████░░░░░
distance to outerplanar███░░░░░░
distance to perfect████░░░░░
distance to planar████░░░░░
distance to stars███░░░░░░
domatic number███░░░░░░
domination number███░░░░░░
edge clique cover number████░░░░░
edge connectivity██░░░░░░░
feedback edge set██████░░░
feedback vertex set████████░
genus██░░░░░░░
girth█░░░░░░░░
h-index████░░░░░
inf-flip-width███░░░░░░
linear clique-width█████░░░░
linear NLC-width██░░░░░░░
linear rank-width██░░░░░░░
maximum clique█████░░░░
maximum degree████████░
maximum independent set██░░░░░░░
maximum induced matching███░░░░░░
maximum leaf number██████░░░
maximum matching███░░░░░░
maximum matching on bipartite graphs░░░░░░░░░
mim-width██████░░░
minimum degree░░░░░░░░░
modular-width███████░░
neighborhood diversity██████░░░
NLC-width████░░░░░
NLCT-width██░░░░░░░
odd cycle transversal██████░░░
outerthickness█░░░░░░░░
pathwidth████████░
pathwidth+maxdegree███░░░░░░
radius-r flip-width███░░░░░░
rank-width███████░░
shrub-depth██████░░░
star-arboricity█░░░░░░░░
thickness███░░░░░░
topological bandwidth████░░░░░
treedepth███████░░
treewidth█████████
twin-cover number█████░░░░
twin-width████████░
vertex connectivity░░░░░░░░░
vertex cover█████████
vertex integrity██████░░░

Graph classes

Some parameters are derived from associated graph classes. Graph classes can be also used as witnesses of proper inclusions. For these purposes, we use the following graph class hierarchy. We assume that all of the graph class inclusions are proper.

We aim to have here only the graph classes that influence parameter inclusions. Please, see Information System on Graph Classes and their Inclusions (ISGCI) for an exhaustive list of graph classes and their inclusions.

Graph hierarchy PDF

This browser does not support PDFs. Please download the PDF to view it: Download PDF.

Graph class ⮁Relevance ⮁
bipartite████████░
block████░░░░░
chordal█████░░░░
cluster██████░░░
co-cluster██████░░░
cograph███████░░
complete█████████
connected██░░░░░░░
cycle██░░░░░░░
cycles████░░░░░
disjoint cycles████░░░░░
edgeless█░░░░░░░░
forest█████████
grid██████░░░
interval███████░░
linear forest████░░░░░
outerplanar█████░░░░
path███░░░░░░
perfect██████░░░
planar████████░
star███░░░░░░
stars████░░░░░
tree███████░░

Sources

Order ⮁Source ⮁
000twwsurfaces2024
001Torunczyk2023
002Tran2022
003twinWidthI2021
004SchroderThesis
005mimwidth2020
006Sorge2019
007Ganian2019
008Froemmrich2018
009Diestel2017
010ParameterizedAlgorithms2015
011ganianTwinCover2015
012Adler2015
013Jansen2013
014Belmonte2013
015modularwidth2013
016Vatshelle2012
017GanianTwinCover2012
018lampis2012
019BuiXuan2011
020bipboxicity2011
021Sasak2010
022Jelinek2010
023cliquewidthnpc2009
024gradnesetril2008
025spanningTreesManyLeaves2008
026GeometricThickness2007
027Oum2006
028Gurski2005
029TackLayouts2004
030courcelle2000
031Johansson1998
032Bodlaender1998
033Wanke1994
034BodlaenderMohring1993
035RobertsonSymour1991
036RobertsonSymour1986V
037Malitz1994
038chordality1993
039RobertsonSymour1986
040Chung1985